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Supplementary Material

§ 1 provides a detail lower bound derivation for the de-

fined loss LW . § 2 presents more details about evaluation

metrics. Implementation details for experiments are pro-

vided in § 3, and further comparisons against state-of-the-

art methods are shown in § 4. Finally, we present several

visualizations for qualitative analysis in § 5.

1. Lower Bound Derivation

Following the predictive network described in § 3 of our

main paper, the joint probability distribution for our pro-

posed world model can be factorized as:

p(h1:T , s1:T ,x1:T+Tp
a1:T+Tp

) =

T∏
t=1

p(ht, st|ht−1, st−1,at−1)p(xt,at|ht, st)

Tp∏
j=1

p(hT+j , sT+j |hT , sT ,aT+j−1)p(xT+j ,aT+j |hT , sT ),

(1)

For the first item for step 1 to T , we have:

p(ht, st|ht−1,st−1,at−1) =

p(ht|ht−1, st−1)p(st|ht,at−1),
(2)

p(xt,at|ht, st) = p(xt|ht, st)p(at|ht, st), (3)

Given that ht is deterministic as discussed earlier, we

have p(ht|ht−1, st−1) = δ (ht − fθ(ht−1, st−1)). There-

fore, we need to infer the latent variables s1:T . Since

no observations are available during the prediction phase

[T + 1 : T + Tp], the inference process focuses on max-

imizing the marginal likelihood over the observed data

p(x1:T ,a1:T ). Based on deep variational inference, we

introduce a variational distribution qH,S and factorize as

follows, for we assume that independence of (x1:T ,a1:T )
given (o1:T ,a1:T−1):

qH,S � q(h1:T+Tp , s1:T+Tp |o1:T ,x1:T+Tp ,a1:T+Tp)

� q(h1:T , s1:T |o1:T ,x1:T ,a1:T )

� q(h1:T , s1:T |o1:T ,a1:T−1)

=

T∏
t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1),

(4)

with q(ht|ht−1, st−1) = p(ht|ht−1, st−1) and q1(h1) =
δ(0). The Kullback-Leibler (KL) divergence between the

prior and posterior distributions can be calculated as:

DKL(q(h1:T , s1:T |o1:T ,x1:T+Tp
,a1:T+Tp

)

‖ p(h1:T , s1:T |x1:T+Tp
,a1:T+Tp

))

= Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,x1:T+Tp
,a1:T+Tp

)

p(h1:T , s1:T |x1:T+Tp
,a1:T+Tp

)

]

= Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,x1:T+Tp
,a1:T+Tp

)

p(h1:T , s1:T |x1:T+Tp
,a1:T+Tp

)

]
= Eh1:T ,s1:T∼qH,S[
log

q(h1:T , s1:T |o1:T ,x1:T+Tp
,a1:T+Tp

)p(x1:T+Tp
,a1:T+Tp

)

p(h1:T , s1:T |x1:T+Tp
,a1:T+Tp

)p(h1:T , s1:T )

]
= log p(x1:T+Tp ,a1:T+Tp)

− Eh1:T ,s1:T∼qH,S

[
log p(x1:T+Tp ,a1:T+Tp |h1:T , s1:T )

]
+DKL

(
q(h1:T , s1:T |o1:T ,x1:T+Tp ,a1:T+Tp) ‖ p(h1:T , s1:T )

)
.

(5)

Since DKL ≥ 0, the left side of Eq. (5) should be non-

negative. Based on Jensen’s inequality [22], a variational

lower bound on the log evidence can be obtained as follows:

log p(x1:T+Tp
,a1:T+Tp

) ≥
Eh1:T ,s1:T∼qH,S

[
log p(x1:T+Tp

,a1:T+Tp
|h1:T , s1:T )

]−
DKL

(
q(h1:T , s1:T |o1:T ,x1:T+Tp

,a1:T+Tp
) ‖ p(h1:T , s1:T )

)
.

(6)

As for the first term of the lower bound in Eq. (6):

Eh1:T ,s1:T∼qH,S

[
log p(x1:T+Tp

,a1:T+Tp
|h1:T , s1:T )

]
= Eh1:T ,s1:T∼qH,S

[
log

T∏
t=1

p(xt|ht, st)p(at|ht, st)

Tp∏
j=1

p(hT+j , sT+j |hT , sT ,aT+j−1)p(xT+j ,aT+j |hT , sT )

⎤
⎦

=

T∑
t=1

Eh1:t,s1:t∼q(ht,st|o1:t,a1:t−1)[log p(xt|ht, st)

+ log p(at|ht, st)] +

Tp∑
j=1

EhT ,sT∼q(hT ,sT |o1:t,a1:t−1)

[log p(xT+j |hT , sT ) + log p(aT+j |hT , sT )],

(7)



where Eq. (7) is obtained by integrating over remaining la-

tent variables (ht:1+T , st:1+T ).
Regarding the second term of the lower bound in Eq. (6),

since there are no observations available during the predic-

tion phase [T +1 : T +Tp], the posterior distribution q is no

longer updated with new input information. Consequently,

it converges to the prior distribution, making the KL diver-

gence between the posterior q(hT :T+Tp
, sT :T+Tp

) and the

prior p(hT :T+Tp , sT :T+Tp) equal to zero. As a result, only

the KL divergence for the observed phase [1 : T ] needs to

be considered, which can be calculated according to Eq. (4):

DKL

(
q(h1:T , s1:T |o1:T ,x1:T+Tp ,a1:T+Tp) ‖ p(h1:T , s1:T )

)
�DKL (q(h1:T , s1:T |o1:T ,a1:T−1) ‖ p(h1:T , s1:T ))

=Eh1:T ,s1:T∼qH,S

[
log

q(h1:T , s1:T |o1:T ,a1:T−1)

p(h1:T , s1:T )

]

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T ,a1:T−1)(
log

q(h1:T , s1:T |o1:T ,a1:T−1)

p(h1:T , s1:T )

)
dh1:T ds1:T

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T ,a1:T−1)

log

[
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

p(ht|ht−1, st−1)p(st|ht−1, st−1)

]
dh1:T ds1:T

=

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

)
(

T∑
t=1

log
q(st|o1:t,a1:t−1)

p(st|ht−1, st−1)

)
dh1:T ds1:T .

(8)

Based on the above deduction, we iteratively integrate out

each latent variable and, by recursively applying this pro-

cess to the sum of logarithmic terms indexed by t, decom-

pose the KL divergence into a summation over time steps.

DKL (q(h1:T , s1:T |o1:T ,x1:T ,a1:T ) ‖ p(h1:T , s1:T ))

=

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

)
(
log

q(s1|o1)

p(s1)
+

T∑
t=2

log
q(st|o1:t,a1:t−1)

p(st|ht−1, st−1)

)
dh1:T ds1:T

=Es1∼q(s1|o1)

[
log

q(s1|o1)

p(s1)

]

+

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

)
(

T∑
t=2

log
q(st|o1:t,a1:t−1)

p(st|ht−1, st−1)

)
dh1:T ds1:T

=DKL (q(s1|o1) ‖ p(s1))

+

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

)
(
log

q(s2|o1:2,a1)

p(s2|h1, s1)
+

T∑
t=3

log
q(st|o1:t,a1:t−1)

p(st|ht−1, st−1)

)
dh1:T ds1:T

=DKL (q(s1|o1) ‖ p(s1))+
Eh1,s1∼q(h1,s1|o1) [DKL (q(s2|o1:2,a1) ‖ p(s2|h1, s1))]

+

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o1:t,a1:t−1)

)
(

T∑
t=3

log
q(st|o1:t,a1:t−1)

p(st|ht−1, st−1)

)
dh1:T ds1:T

=
T∑

t=1

Eht−1,st−1∼q(ht−1,st−1|o1:t−1,a1:t−2)

[DKL (q(st|o1:t,a1:t−1) ‖ p(st|ht−1, st−1))]

(9)

Combining Eq. (8), Eq. (9) and Eq. (6), the final lower

bound can be obtained as follows:

log p(x1:T+Tp ,a1:T+Tp) ≥
T∑

t=1

Eh1:t,s1:t∼q(ht,st|o1:t,a1:t−1)[log p(xt|ht, st)

+ log p(at|ht, st)] +

Tp∑
j=1

EhT ,sT∼q(hT ,sT |o1:t,a1:t−1)

[log p(xT+j |hT , sT ) + log p(aT+j |hT , sT )],

−
T∑

t=1

Eht−1,st−1∼q(ht−1,st−1|o1:t−1,a1:t−2)

[DKL (q(st|o1:t,a1:t−1) ‖ p(st|ht−1, st−1))]

(10)

2. Evaluation Metrics for VLN-CE agents

We follow previous approaches [4, 5, 20] and adopt the stan-

dard metrics for evaluating VLN-CE agents:

• TL (Trajectory length) measures the average length of

the predicted navigation trajectories.

• NE (Navigation Error) measures the average distance

(in meter) between the agent’s final position in the pre-

dicted trajectory and the target in the ground truth.

• SR (Success Rate) is the proportion of the agent stop-

ping in the predicted route within a threshold distance

(set as 3 meters) of the goal in the reference route.

• OSR (Oracle Success Rate) is the proportion of the

closest point in the predicted trajectory to the target in

the reference trajectory within a threshold distance.



• SPL (Success weighted by Path Length) )is a compre-

hensive metric method integrating SR and TL that takes

both effectiveness and efficiency into account.

• NDTW (Normalized Dynamic Time Warping) mea-

sures the normalized cumulative distance between ref-

erence path and agent position.

• SDTW (Success weighted by normalized Dynamic

Time Warping) is a comprehensive metric method inte-

grating NDTW and SR that takes both path efficiency

and task completion into account.

3. Implementation Details
The Baseline Framework. In conventional panoramic

VLN-CE frameworks [3, 36], the agent perceives its sur-

roundings through multi-view RGB-D panoramas captured

at 30-degree intervals at each timestep t. These panoramic

observations are processed by a trained waypoint predic-

tion module[18] to identify navigable waypoints. The VLN

model then encodes both the visual features of these way-

points and their spatial information (relative direction and

distance) to construct a topological map. This map is sub-

sequently integrated with the navigation instruction via the

Cross-Modal Graph Transformer[3, 11], which selects the

optimal waypoint as the agent’s next navigation goal.

Monocular VLN-CE settings rely on a single RGB-D

camera, which presents challenges in waypoint estimation

due to the lack of full panoramic coverage. To address

this, an enhanced waypoint predictor [37] utilizes a seman-

tic traversability map and 3D feature fields to infer viable

waypoints, ensuring effective decision-making even with

limited field-of-view.

Model Configuration. Following the previous baseline

model [3, 37], we utilize CLIP-pretrained ViT-B/32 [13]

for RGB feature extraction, while depth information is pro-

cessed through a point-goal navigation pretrained ResNet-

50 [17]. The framework maintains encoder depths of 2, 9,

and 4 layers for panoramic, textual, and cross-modal graph

components respectively, aligned with [15, 18]. Other hy-

perparameters are the same as LXMERT [31] on the R2R-

CE dataset and pre-trained RoBerta [27] for the multilin-

gual RxR-CE dataset. The camera’s HFOV is set to 90◦ for

R2R-CE and 79◦ for RxR-CE.

Experimental Details. NavMorph was trained over 10K

episodes on the R2R-CE dataset and 20K episodes on the

RxR-CE dataset, following the same initialization and train-

ing strategies as the pretrained baseline [3, 37]. The learn-

ing rate is set to 1 × 10−5, while the weighting coefficient

for loss function L is γ = 10−3. Note that the weighting

coefficients are heuristically adjusted to balance each loss

term, ensuring they remain at the same order of magnitude

based on initial values.

At each timestep of a navigation task, the model pre-

dicts actions for Tp = 2 consecutive future states, starting

from t = 1 (i.e., the next position after the agent’s initial

point). Accordingly, the observation window T dynami-

cally expands throughout the navigation process, increasing

until the agent selects ‘stop’ action or reaches the maximum

step limit. For input image dimensions No × h × w × c,
we set 1 × 224 × 224 × 3 for monocular settings and

12 × 224 × 224 × 3 for panoramic settings. The encoded

visual embedding has a dimension of dx = 512, while both

scene-contextual features (dv) and action embedding (da)

are set to 768. Our Contextual Evolution Memory (CEM)

is initially randomized and progressively updated with in-

formative scene-contextual features. These features are de-

rived from panoramic visual representations extracted by

the panoramic encoder during training, encapsulating com-

prehensive environmental information to enhance naviga-

tion. The memory size Nm is set to 1000. For the monoc-

ular setting, K is set to 16 for top-K retrieval with update

factors α = β = 0.7. For panoramic setting, K is set to 10

for top-K retrieval with update factors α = β = 0.9.

Working Modes. During the training phase, NavMorph

operates through two core components: the world-aware

navigator, which executes navigation actions for VLN-CE

tasks, and the foresight action planner, which performs

imaginative rollouts for future Tp steps. This collabora-

tive framework enables the model to learn effective nav-

igation strategies while simultaneously refining its latent

state representation capabilities. During the online testing
phase, the world-aware navigator performs navigation plan-

ning by leveraging the predicted future actions generated

by the foresight action planner as guidance. Specifically,

the navigator evaluates each candidate waypoint by assign-

ing navigation scores based on the learned policy, which are

subsequently refined according to their proximity to the pre-

dicted trajectory points. This weighting strategy prioritizes

candidates closer to the predicted path, seamlessly integrat-

ing the foresight planner’s predictions into final navigation

decision-making process.

4. Complementary Experiments

4.1. Full Results

In our main paper, we provide representative comparison

results on the R2R-CE [5, 24] and RxR-CE [24, 25] bench-

marks due to space constraints. Here, we present the com-

plete results across the ‘validation seen’, ‘validation un-

seen’, and ‘test unseen’ splits of these benchmarks, includ-

ing comparisons with a broader range of state-of-the-art

methods, as detailed in Table 1 and Table 2. Our self-

evolving world model enhances its ability to anticipate fu-

ture states based on current observations and cross-episodic

experiences, effectively handling complex navigation tasks

even with monocular input.

Performance Improvement on Seen/Unseen sets. Based



Table 1. Experimental results on R2R-CE dataset. Results better than base model are shown in blue. Best results for the panoramic and

monocular settings are each highlighted in bold. * indicates experimental results that we have reproduced in this work.

Val Seen Val Unseen Test UnseenCamera Methods
TL ↓ NE ↓ OSR SR SPL TL ↓ NE ↓ OSR SR SPL TL ↓ NE ↓ OSR SR SPL

LAW [30] 9.34 6.35 49 40 37 8.89 6.83 44 35 31 9.67 7.69 28 38 25

CM2 [15] 12.05 6.10 50.7 42.9 34.8 11.54 7.02 41.5 34.3 27.6 13.90 7.70 39 31 24

WS-MGMap [9] 10.12 5.65 51.7 46.9 43.4 10.00 6.28 47.6 38.9 34.3 12.30 7.11 45 35 28

NaVid [39] - - - - - - 5.47 49.1 37.4 35.9 - - - - -

ETPNav/p [37] - - - - - - 6.81 42.4 32.9 23.1 - - - - -

VLN-3DFF [37] - - - - - - 5.95 55.8 44.9 30.4 - 6.24 54.4 43.7 28.9

VLN-3DFF* 22.90 4.92 62.1 52.7 36.7 26.16 6.05 54.9 43.8 29.4 26.02 6.22 54.7 43.8 28.6

Monocular

NavMorph 20.03 4.58 62.7 55.8 38.9 22.54 5.75 56.9 47.9 33.2 24.75 6.01 54.5 45.7 30.2

Seq2Seq [5] 9.26 7.12 46 37 35 8.64 7.37 40 32 30 8.85 7.91 36 28 25

SASRA [21] 8.89 7.71 - 36 34 7.89 8.32 - 24 22 - - - - -

CWTP [8] - 7.10 56 36 31 - 7.90 38 26 23 - - - - -

AG-CMTP [6] - 6.60 56 36 31 - 7.90 39 23 19 - - - - -

R2R-CMTP [6] - 7.10 45 36 31 - 7.90 38 26 23 - - - - -

WPN [34] 8.54 5.48 53 46 43 7.62 6.31 40 36 34 8.02 6.65 37 32 30

Sim2Sim [23] 11.18 4.67 61 52 44 10.69 6.07 52 43 36 11.43 6.17 52 44 37

CWP-CMA [18] 11.47 5.20 61 51 45 10.90 6.20 52 41 36 11.85 6.30 49 38 33

CWP-BERT [18] 12.50 5.02 59 50 44 12.23 5.74 53 44 39 13.51 5.89 51 42 36

ERG [34] 11.80 5.04 61 46 42 9.96 6.20 52 41 36 - - - - -

DUET [11] 12.62 4.13 67 57 49 11.86 5.13 55 46 40 13.13 5.82 50 42 36

DREAMW [33] 11.60 4.09 59 66 48 11.30 5.53 49 59 44 11.80 5.48 49 57 44

Ego2-Map [19] - - - - - - 4.93 - 52 46 - 5.54 56 47 41

ScaleVLN [35] - - - - - - 4.80 - 55 51 - 5.11 - 55 50

GridMM [36] 12.69 4.21 69 59 51 13.36 5.11 61 49 41 13.31 5.64 56 46 39

BEVBert [1] 13.98 3.77 73 68 60 13.27 4.57 67 59 50 15.31 4.70 67 59 50

FSTTA [14] 12.39 4.25 69 58 50 11.58 5.27 58 48 42 13.17 5.84 55 46 38

ETPNav [3] 11.78 3.95 72 66 59 11.99 4.71 65 57 49 12.87 5.12 63 55 48

ETPNav* 11.35 3.93 72 66 59 11.40 4.69 64 57 49 12.72 5.10 63 55 48

NavMorph 11.43 3.86 73 67 60 11.55 4.62 66 59 50 12.88 4.91 64 57 49

HNR [38] 11.79 3.67 76 69 61 12.64 4.42 67 61 51 13.03 4.81 67 58 50

HNR* 11.84 3.73 76 69 61 12.76 4.57 67 61 51 12.92 4.85 67 58 50

Panoramic

NavMorph 11.76 3.66 78 70 62 12.68 4.37 68 64 53 12.69 4.69 68 60 52
Note: Following established conventions in prior works, we report experimental results with different precision formats across camera configurations: integers for panoramic settings and

two decimal places for monocular settings.

on the experimental results in Table 1 and Table 2, our

proposed NavMorph consistently achieves notable perfor-

mance improvements across different datasets. While per-

formance gains varies between seen and unseen environ-

ments, we analyze relative improvements to better quantify

the effectiveness of our self-evolving world model across

different settings.

Taking the monocular setup as an example, NavMorph

improves the success rate (SR) by 6.85% in unseen en-

vironments, compared to 5.88% in seen environments on

R2R-CE dataset. The improvement in SPL is even more

pronounced, reaching 9.26% in unseen environments versus

5.99% in seen environments. A similar trend is observed in

RxR-CE, where unseen SR improves by 10.94%, while seen

SR increases by 7.54%. Likewise, SPL improves 11.29% in

unseen settings, compared to 12.71% in seen ones. These

results indicate that NavMorph achieves higher or compara-

ble performance gains in unseen environments (average of

val/test unseen) compared to seen ones, demonstrating its

capacity to generalize across novel tasks.

A key factor contributing to this generalization ability is

self-evolution, which enhances adaptation uniformly across

both seen and unseen data rather than specifically optimiz-

ing for new scenarios. The observed gains in seen settings

further suggest that the model effectively adapts to novel

instructions within familiar scenes, rather than merely over-

fitting to training data.

4.2. Extended Results for Self-Evolution
Detailed Ablation Study on Self-Evolution Strategy. In

our main paper (Table 3), we conducted an ablation study

on the effect of self-evolution, in which the proposed Con-

textual Evolution Memory (CEM) module was entirely pre-

vented from updating. The results demonstrated the effec-

tiveness of self-evolution in enhancing model performance

and learning dynamics. To further investigate its role only

in online adaptation, we introduce ‘NavMorph w/o SE*’,

a variant where CEM undergoes self-evolution following

Eq. (3) in main paper during training, progressively refin-

ing its stored representations. Once training is complete,



Table 2. Experimental results on RxR-CE datasets. Results better than the base model are shown in blue. Best results for the panoramic

and monocular settings are each highlighted in bold.

Val Seen Val Unseen Test UnseenCamera Methods
TL ↓ NE ↓ OSR SR SPL NDTW SDTW TL ↓ NE ↓ OSR SR SPL NDTW SDTW TL ↓ NE ↓ OSR SR SPL NDTW SDTW

LAW [30] 7.92 11.94 20.0 7.0 6.0 - - 4.01 10.87 21.0 8.0 8.0 - - - - - - - - -

CM2 [15] - - - - - - - 12.29 8.98 25.3 14.4 9.2 - - - - - - - - -

WS-MGMap [9] 10.37 10.19 27.7 14.0 12.3 - - 10.80 9.83 29.8 15.0 12.1 - - - - - - - - -

NaVid [39] - - - - - - - 10.59 8.41 34.5 23.8 32.2 - - - - - - - - -

A2-Nav [10] - - - - - - - - - - 16.8 6.3 - - - - - - - - -

VLN-3DFF [37] - - - - - - - - 8.79 36.7 25.5 18.1 - - - - - - - - -

VLN-3DFF* 18.91 9.87 40.54 27.72 20.61 42.37 20.94 16.21 9.41 38.40 26.66 20.11 42.91 20.36 20.85 10.19 - 23.41 15.43 32.38 14.75

Monocular

NavMorph 21.61 9.80 41.27 29.81 23.23 44.51 22.68 20.28 8.85 43.05 30.76 22.84 44.19 23.30 21.13 9.81 - 24.93 16.82 33.71 15.64

Seq2Seq [5] - - - - - - - 7.33 12.1 - 13.93 11.96 30.86 11.01 - 12.10 - 13.93 11.96 30.86 11.01

Reborn [2] - 5.69 - 52.43 45.46 66.27 44.47 - 5.98 - 48.60 42.05 63.35 41.82 - 7.10 - 45.82 38.82 55.43 38.42

CWP-CMA [18] - - - - - - - - 8.76 - 26.59 22.16 47.05 - 20.04 10.4 - 24.08 19.07 37.39 18.65

CWP-RecBERT [18] - - - - - - - - 8.98 - 27.08 22.65 46.71 - 20.09 10.4 - 24.85 19.61 37.30 19.05

AO-Planner [7] - - - - - - - - 7.06 - 43.3 30.5 50.1 - - - - - - - -

LAW-Pano [30] 6.27 12.07 17.0 9.0 9.0 - - 4.62 11.04 16.0 10.0 9.0 - - - - - - - - -

UnitedVLN [12] - 4.74 - 65.1 52.9 69.4 53.6 - 5.48 - 57.9 45.9 63.9 48.1 - - - - - - -

ETPNav [3] - 5.03 - 61.46 50.83 66.41 51.28 - 5.64 - 54.79 44.89 61.90 45.33 - 6.99 - 51.21 39.86 54.11 41.30

ETPNav* 18.16 5.06 64.06 62.09 50.64 66.06 51.17 18.92 5.96 63.66 54.83 44.62 61.36 44.87 21.83 6.92 - 51.38 39.90 53.85 40.91

NavMorph 18.97 5.08 65.86 63.88 52.28 67.94 52.54 19.93 5.80 64.83 56.23 46.39 63.23 46.98 21.29 6.90 - 51.97 41.56 55.01 42.60

HNR [38] - 4.85 - 63.72 53.17 68.81 52.78 - 5.51 - 56.39 46.73 63.56 47.24 - 6.81 - 53.22 41.14 55.61 42.89

HNR* 19.74 4.93 66.01 63.55 53.37 69.02 52.66 20.41 5.75 64.93 56.48 46.62 63.43 47.38 23.02 6.88 - 53.33 41.18 55.47 42.95

Panoramic

NavMorph 20.80 5.10 67.88 64.95 54.17 70.94 54.82 21.33 5.67 66.02 58.02 48.98 64.77 48.85 23.36 6.67 - 54.98 43.02 57.31 44.76
Note: Official evaluation on the Test Unseen split of RxR-CE dataset only provides TL, NE, SR, SPL, NDTW and SDTW metrics, thus OSR metric is not reported for the test split in this table.

the finalized memory is used as the initial state for deploy-

ment and remains unchanged throughout online testing.

As shown in Table 3, enabling self-evolution during on-

line testing improves performance in online unseen envi-

ronments, highlighting its crucial role in real-time adapta-

tion. Moreover, since the self-evolution process benefits

from prolonged environmental interaction—where unsuper-

vised learning progressively refines the model’s dynamic la-

tent state—we extend our analysis to a larger, more diverse

dataset, RxR-CE, to examine its influence on generaliza-

tion. The results indicate a notable improvement in SPL

(21.46→22.84), further validating the effectiveness of self-

evolution in enhancing adaptability in unseen environments.

Different Steps of Predictive Future States Tp. As shown

in Table 4, we further investigate the impact of varying

predictive steps in our foresight action planner on naviga-

tional performance. Notably, predicting two steps (Tp = 2)

achieves the optimal balance across key metrics, offering

sufficient foresight for reliable decision-making without in-

troducing excessive uncertainty. As Tp increases beyond 2,

we observe a slight decline in SPL, SR, and NDTW, pos-

sibly due to compounding errors (accumulation of inaccu-

racies over multiple predictive steps) or over-commitment

to future predictions (focuses too heavily on long-term pre-

dictions), which reduces the agent’s flexibility to adapt to

changing environments. These results demonstrate the need

of striking a balance between foresight and adaptability.

Predicting too few steps may limit the agent’s strategic plan-

ning, while predicting too many steps introduces unneces-

sary complexity, diminishing trajectory efficiency.

4.3. Other Ablation Studies

Comparison with Representative TTA Strategies. In our

main paper, we discussed how our evolving world model

accumulates scene-specific information from test environ-

Table 3. Ablation Study on Self-Evolution.

Dataset Methods TL ↓ NE ↓ OSR SR SPL NDTW SDTW

R2R-CE

Val

Unseen

Base Model 26.16 6.05 54.92 43.77 29.39 40.94 29.30

NavMorph w/o SE* 23.33 5.77 56.12 46.87 32.56 44.42 32.16

NavMorph 22.54 5.75 56.88 47.91 33.22 44.86 32.73

RxR-CE

Val

Unseen

Base Model 16.21 9.41 38.40 26.66 20.11 42.91 20.36

NavMorph w/o SE* 20.83 9.08 41.49 28.78 21.46 43.26 21.52

NavMorph 20.28 8.85 43.05 30.76 22.84 44.19 23.30

Note: Results better than ‘NavMorph w/o SE*’ are shown in blue.

Table 4. Experimental Results for Different Predictive Steps.

Methods Predictive
Steps Tp

R2R-CE Val Unseen
TL ↓ NE ↓ OSR SR SPL NDTW SDTW

Base model - 26.16 6.05 54.92 43.77 29.39 40.94 29.30

NavMorph

1 22.05 5.99 55.57 46.06 32.78 44.89 32.36

2 22.54 5.75 56.88 47.91 33.22 44.86 32.73
3 25.36 5.99 56.50 44.97 31.30 42.99 30.57

4 20.91 5.81 55.52 46.82 32.04 44.61 32.20

5 25.94 5.69 56.66 47.18 31.79 43.72 31.92

ments as memory knowledge during online testing. This

mechanism allows the model to refine its predictions in dy-

namically changing environments without requiring ground

truth actions. A related class of approaches, referred to as

Test-Time Adaptation (TTA), also aims to improve model

generalization by dynamically adjusting model parameters

during testing, often through gradient-based updates or sta-

tistical alignment methods (e.g., batch normalization adap-

tation, entropy minimization).

Given the comparison with the most related method,

FSTTA [14], in our main paper, we further evaluate rep-

resentative TTA approaches under the same test conditions

as FSTTA (i.e., updating the same set of parameters) and

compare them with our NavMorph. To ensure a fair and

robust evaluation, we conduct experiments under three dif-

ferent random seeds, reporting both the mean and standard

deviation of the results. As demonstrated in Table 5, our

proposed NavMorph achieves the best overall performance

while exhibiting more stable results (with lower standard



Table 5. Comparison with Representative TTA Strategies.

Methods R2R-CE Val Unseen

TL ↓ NE ↓ OSR SR SPL NDTW SDTW

Base Model 26.16 6.05 54.92 43.77 29.39 40.94 29.30

+ Tent [32] 28.56± 1.59 7.21± 1.01 52.13± 1.98 40.97± 1.77 27.46± 0.94 37.90± 1.53 27.65± 1.60

+ NOTE [16] 26.88± 1.82 6.71± 0.63 53.87± 1.71 42.85± 0.88 28.43± 0.56 39.02± 0.93 28.37± 0.88

+ SAR [29] 27.15± 1.40 6.57± 0.83 53.50± 1.30 43.02± 0.91 27.98± 0.72 38.77± 0.95 27.92± 0.75

+ ViDA [26] 26.74± 1.26 6.88± 0.75 55.26± 0.98 43.58± 0.86 28.29± 0.53 40.89± 0.94 28.73± 0.56

+ FSTTA [14] 28.25± 0.72 6.67± 0.34 55.41± 0.91 43.94± 0.32 29.63± 0.47 42.76± 0.65 29.34± 0.49

NavMorph 22.54± 0.07 5.75± 0.03 56.88± 0.05 47.91± 0.04 33.22± 0.02 44.86± 0.07 32.73± 0.04

Note: The reported values represent the mean results, with the standard deviation provided in a reduced font size. Best results are

shown in bold.

deviation). These results highlight the effectiveness of in-

corporating a world model in VLN-CE tasks, as conven-

tional TTA methods alone yield limited improvements, un-

derscoring the necessity of structured world modeling for

online adaptation to novel tasks.

Additionally, the configurations of these TTA strategies

for VLN are detailed as follows:

• Tent [32]. We adopt all hyperparameter settings as spec-

ified in Tent. Specifically, the optimizer is AdamW [28],

and for a batch size of 1, the learning rate is set to

0.001/64.

• NOTE [16]. The hyperparameter configurations strictly

follow those defined in NOTE. In particular, the soft-

shrinkage width is set to 4, and the EMA momentum is

0.01. The optimization is performed using AdamW with

a learning rate of 0.0001.

• SAR [29]. We adhere to the default hyperparameters in

SAR. Specifically, the entropy constant E0 (for reliable

sample identification) is set to 0.4 × ln 1000, while the

neighborhood size for sharpness-aware minimization is

configured as 0.05. For model recovery, the moving aver-

age factor is 0.9, and the reset threshold is 0.2.

• ViDA [26]. The experimental setup follows the origi-

nal ViDA configuration. Random augmentation compo-

sitions, including Gaussian noise and dropout, are incor-

porated. The AdamW optimizer, identical to that in Tent,

is utilized. The threshold value is set to 0.2, and the up-

dating weight is 0.999.

Ablation Study of Action Embedding. In our proposed

world model, action embedding at plays a crucial role in

modeling state transitions and long-term predictive reason-

ing within RSSM, enabling the model to generate plausi-

ble future trajectories based on past observations and ac-

tions (Section 3.1 in main paper). Some readers may won-

der whether the model’s performance improvement arises

from learning an action-state mapping through action em-

bedding. To further investigate this, we conduct an abla-

tion study to assess its role in latent representation learn-

ing. Specifically, we introduce a variant, ‘Base-AE’, which

retains the same backbone as the baseline model (VLN-

3DFF [37]) without world modeling but includes an addi-

tional action embedding input.

As shown in Table 6, the results indicate only marginal

Table 6. Ablation Study of Action Embedding.

Methods R2R-CE Val Unseen

TL ↓ NE ↓ OSR SR SPL NDTW SDTW

Base Model 26.16 6.05 54.92 43.77 29.39 40.94 29.30

Base-AE 26.01 6.09 55.1 43.4 29.3 41.34 29.42

NavMorph 22.54 5.75 56.88 47.91 33.22 44.86 32.73
Note: ‘Base Model’ denotes the chosen baseline under monocular setting, VLN-3DFF.

‘Base-AE’ denotes the baseline incorporating action information into the input without

the world model. Best results are shown in bold.

differences (OSR: 54.9→55.1, SR: 43.8→43.4, SPL:

29.4→29.3), indicating that explicitly encoding actions has

a negligible effect on performance. This finding highlights

that the observed improvements in our method stem primar-

ily from the self-evolving world model’s ability to model

environmental dynamics, rather than the mere inclusion of

action embedding.

Computational Analysis. Table 4 in main paper demon-

strates that NavMorph maintains comparable inference ef-

ficiency to the base model, with an average episode time of

21.22s vs 20.53s, while achieving nearly 4% improvements

in both SR and SPL. In terms of parameter overhead, our

CEM introduces only a marginal increase—adding 2.30M

parameters compared to the base model’s 228.96M, ac-

counting for merely 1.0% of the total model size. Given the

consistent performance improvements, the computational

and memory overheads are lightweight and acceptable.

4.4. Extensive Discussion
While our method shares similarities with test-time adapta-

tion (TTA), NavMorph fundamentally extends beyond this

paradigm. Traditional TTA typically applies gradient-based

parameter updates during inference for static classification

tasks. In contrast, our approach incorporates a contex-

tual evolution mechanism (CEM) within the RSSM frame-

work, explicitly modeling environment state transitions dur-

ing both training and inference phases. This mechanism

enables the agent to adapt proactively to dynamic environ-

ments—not just during inference—by selectively integrat-

ing new scene observations while retaining historically rel-

evant information.

At the core of this design lies the Contextual Evolu-

tion Memory (CEM), which enhances long-term reason-

ing by dynamically maintaining latent scene representa-

tions. Rather than accumulating all past experiences, CEM

performs top-K scene retrieval based on visual similarity,

maintaining memory entries that are most pertinent to the

current context. This suppresses noisy or outdated trajec-

tories and enhances the agent’s ability to infer plausible fu-

ture transitions, particularly in out-of-distribution or evolv-

ing scenes, as often encountered in VLN-CE tasks. We pro-

vide ablations (Table 3) comparing variants of NavMorph

with and without online evolution (NavMorph w/o SE*),



(a) Instruction: “Walk out of the room with the bed on your right. Go through the doorway on your left, entering the bathroom.”

(c) Instruction: “Turn around and head down the stairs.  Then walk to the open white door and stand in the doorway. Wait by the sink.” 

(b) Instruction: “Leave the bathroom. Go through the door straight across the hall walk straight through the kitchen. Turn right at the 
end of the bar turn left again and go in the room to the left stand in between the closet and the sink.”

h h d h hh h

Ground Truth NavMorph Key Timesteps in NavMorph Navigation Process

Figure 1. Qualitative results of NavMorph on the R2R-CE dataset are presented, showcasing a comparison between ground truth paths

(GT Trajectory), NavMorph’s executed navigation routes (Trajectory), and the predictive paths generated by the Foresight Action Planner

(Imagined Path). These visualizations highlight NavMorph’s ability to perform effective navigation. Additionally, key input observations

at critical timesteps during NavMorph’s navigation are provided to illustrate its decision-making process.

confirming that the model remains effective even without

runtime adaptation (SR: Base Model 43.77 → NavMorph

w/o SE* 46.87 → NavMorph 47.91).

Importantly, our contribution lies not in the memory de-

sign itself, but in showing that adaptive evolution—when

tightly integrated into a world model—can effectively im-

prove navigation performance in VLN-CE literature.

5. Qualitative Analysis

To evaluate the predictive performance of NavMorph, we

conduct qualitative analysis by comparing trajectories gen-

erated through our Foresight Action Planner with executed

paths and ground truth sequences. Since our world model

encodes high-level features instead of raw images, direct

visualization of latent states remains non-trivial. There-

fore, to effectively illustrate NavMorph’s reasoning process,

we resort to trajectory-based evaluations, where the pre-

dicted and executed navigation sequences serve as an im-

plicit reflection of the model’s latent space dynamics. Fig-

ure 1 presents trajectory visualizations across diverse navi-

gational scenarios, where the coherence between predicted

and executed paths demonstrates the model’s capacity for

environmental dynamics modeling and anticipatory plan-

ning. Furthermore, we visualize key observational inputs

at critical navigation timesteps to provide insights into Nav-

Morph’s decision-making process.

We observe that in simple scenarios with clear naviga-

tion paths (Figure 1(a)), the predicted trajectories closely

align with the actual execution, demonstrating robust state

modeling capabilities. For complex environments involving

multiple room transitions (Figure 1(b)), NavMorph main-

tains trajectory consistency with only minor deviations at

critical decision points. Notably, in challenging multi-level

scenarios (Figure 1(c)), where descending stairs introduces

visual discontinuities and occlusions, the model exhibits re-

silient prediction performance.

Notably, the imagined paths predicted by the foresight

action planner (indicated by green dashed trajectories) oc-

casionally traverse through physical obstacles such as walls

or furniture. This limitation stems from the world model’s

imaginative rollouts lacking immediate environmental feed-

back, particularly navigation rewards that would typically



penalize obstacle intersections. Nevertheless, the foresight

action planner proves effective as an approximation mecha-

nism, generating target-oriented trajectories that the world-

aware navigator can dynamically adjust during execution to

satisfy environmental constraints. These visualization re-

sults validate our world model’s proficiency in capturing

environmental dynamics and spatial-temporal relationships,

facilitating effective predictive planning in navigation tasks.
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