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In this supplementary material, we provide more details

of the proposed UMDATrack. Specifically, in section A,

we display the synthesizing datasets, along with the math-

ematical formulations of Optimal Transport in section B.

In section C, we also include speed test results on embed-

ded device to demonstrate the practical efficiency of our

approach. Furthermore, in section D, we add more ablation

studies. Finally, we show extensive visualization results of

UMDATrack in diverse challenging scenarios in section E.

A. Visualization of the Synthesizing Datasets

To evaluate the robustness of our tracker in adverse condi-

tions, we visualize the frames synthesized by CSG in various

weather conditions, including darkness, fog, rain, and snow.

As illustrated in Fig. 1, by introducing different captions for

domain-specific translation, CSG can flexibly transfer arbi-

trary video frames to the desired target domain via changing

the text prompts.

B. Optimal Transport

The mathematical formulations of Optimal Transport

(OT) are described as follows in detail. Suppose p ∈ R
m

and q ∈ R
n represent two discrete probabilistic distribu-

tions in different domains. OT aims to find a transportation

plan that minimizes the transportation cost as follows:

min ⟨C, X⟩ , s.t. X1 = p, X⊤1 = q, (1)

where X ∈ R
m×n is the transportation plan from p to

q, C ∈ R
m×n is the costmap. The OT problem can be

converted to its dual formulation, which is given by:

Wot(p,q) = max
µ,ν

⟨µ,p⟩+⟨ν,q⟩ , s.t. µi+νj ≤ Ci,j , ∀i, j,

(2)

where µ ∈ R
m and ν ∈ R

n are the solutions of the OT

problem. In TCA, we reshape the response maps of the

teacher-student networks into vector representation and use

C = CConf +CPos as the total cost matrix. The OT problem

can be optimized using a fast Sinkhorn distances algorithm.

C. Deployment on Embbed Device

To validate the effectiveness of our model in real-world

mobile embedded systems, we deployed UMDATrack on the

NVIDIA Jetson AGX Orin for speed testing. The NVIDIA

Jetson AGX Orin is an embedded AI computing platform

designed for edge AI inference and compute-intensive tasks.

Table 1. Inference speed tested under different power settings on

the NVIDIA Jetson AGX Orin.

Power mode 15W 30W 60W

FPS 21.07 35.48 46.32

Table 2. Experiments on the hyperparameter and the composition

of costmap C. The results are evaluated on NAT2021 dataset.

λ CConf CPos AUC (%) Precision (%)

10 - - 52.24 67.49

10 ✓ - 54.01 69.21

10 - ✓ 53.69 68.76

10 ✓ ✓ 54.58 70.78

1 ✓ ✓ 52.14 68.55

100 ✓ ✓ 52.76 68.36

It has different power modes, allowing us to easily test the

performance of models under low power and low computa-

tional conditions. Speed test results are shown in Table 1.

Although the power setting is reduced to 30W, UMDATrack

is able to achieve real-time tracking (35.48 FPS), validating

the effectiveness of our model’s lightweight design. Under

full power (60W) condition, we achieve the highest speed of

46.32 FPS.

D. More Ablation Studies

Our hybrid supervision loss L consists of two parts: Lt

and Lp. Lt follows the loss design used by most trackers,

such as OSTrack [2], while Lp is our proposed position-

sensitive optimal transport (PSOT) loss. Here we analyze

the effects of different compositions of costmap C in Lp and

the hyperparameter λ. As shown in Table 2, we can observe

that both confidence and position costs (CConf and CPos) are

essential to Lp. Besides, setting λ = 10 yields the highest

AUC and Precision scores.

E. More Visualization Results of UMDATrack

E.1. Tracking Results Visualization

In Fig. 2, we present some challenging videos with ex-

treme weather scenarios, including dark, foggy, and rainy

conditions. We can see that in these cases, the generic track-

ers like ARTrackV2 [1] and ODTrack [3] fail to capture the

indistinguishable target object due to the extreme low light or

fog, etc. However, UMDATrack can maintain high-quality

target state prediction even in these extreme scenarios.
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Figure 1. Visualization of the synthesized video frames under adverse weather conditions, i.e. dark, foggy, rainy and snowy scenarios.

Please zoom in for details.
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Figure 2. Comparative tracking results of the proposed UMDA-

Track and other state-of-the-art trackers.

E.2. Heatmap Visualization in Adverse Conditions

We present the visualization results of tracking heatmaps

in Fig. 3. In extreme dark scenarios, our tracker can accu-

rately locate the target object, even when the target is barely

visible to the human eyes. In the foggy scene, although

there are significant appearance variation and poor visibil-

ity, UMDATrack still computes correct prediction outputs.

Other scenarios like rain and snow also show that UMDA-

Track can generate high-quality response heatmaps across

multiple video frames in challenging scenarios, even when

visibility is severely limited or the target is obscured by

environmental factors.
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Figure 3. Visualization of the tracking heatmaps predicted by

UMDATrack in adverse weather conditions.
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Figure 4. The convergence speed of DCA. Please zoom in for

details.
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Figure 5. Visualized tracking results of UMDATrack in real-world

scenarios, including nighttime, foggy, rainy and snowy videos.

E.3. Study on the speed of DCA convergence

We analyze the convergence speed in which the DCA

achieves its optimal performance during training. As shown

in Fig. 4, around 50 epochs, the DCA has already obtained

encouraging performance. Beyond this point, performance

increases only slightly, and may even decline with additional

epochs. Therefore, we suggest a trade-off between perfor-

mance and training time to achieve efficiency.

E.4. Real­World Test

To further validate the tracking performance of our UM-

DATrack in real adverse scenarios, we test it on the videos

collected from real-world imaging systems. The results are

shown in Fig. 5, we can see that the real-world tests confirm

the effectiveness of UMDATrack. Note that our UMDA-

Track is not limited to the aforementioned extreme scenar-

ios, it can be rapidly trained using a small partition of syn-

thesized dataset under the guidance of weather-specific text

prompts. Our UMDATrack leads new SOTA performance

for object tracking under adverse weather conditions.
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