
Appendix
In this appendix, we provide additional analyses, imple-
mentation details, and qualitative results to complement the
main paper. These include the effects of in-context example
count, generalization to rephrased queries, technical con-
tributions of GCLF, detailed scene-wise performance, and
visualizations that further support the robustness and inter-
pretability of the GeoProg3D framework.

A. Additional Analysis on Visual Program-
ming

This section provides a detailed analysis of the visual pro-
gramming component in GeoProg3D, focusing on the im-
pact of in-context examples and the framework’s general-
ization capabilities.

A.1. Effect of In-Context Example Count
To evaluate the impact of the number of in-context exam-
ples (ICEs) on the performance of our framework, we con-
ducted an experiment by varying the number of ICEs pro-
vided to LLM. As shown in Figure 8, we measured the
success rate of program generation for each of our five
tasks, using 5, 10, and 15 ICEs. The results demonstrate
a clear trend: the program generation success rate improves
as the number of ICEs increases. With 15 ICEs, the suc-
cess rate reaches approximately 90% for most tasks and
begins to saturate. It is noteworthy that even with only 5
ICEs, GeoProg3D achieves a program generation success
rate of around 70%. This level of performance is sufficient
to significantly outperform baseline methods. For instance,
on the GRD task, GeoProg3D with 5 ICEs scores 38.02%
in localization accuracy, whereas LangSplat achieves only
17.07%. This highlights the efficiency of our approach in
leveraging LLMs for compositional reasoning with a mini-
mal number of examples.
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Figure 8. Success rate of program generation for each task

A.2. Generalization to Rephrased Queries
To assess the generalization capability and linguistic robust-
ness of GeoProg3D, we evaluated its performance against
rephrased queries. We used GPT-4o to generate para-
phrased versions of the original queries in our GeoEval3D
benchmark, creating a new test set denoted as ”Rephrased
Queries (RQ)” (Table 10). We then ran our full framework,
GeoProg3D, on this RQ set. The results are presented in
Table 8 (for the GRD task) and Table 9 (for other tasks).

Test scene LangSplat GCLF GeoProg3D GeoProg3D+RQ

GoogleEarth 17.07 26.83 46.34 46.34

Table 8. Localization accuracy (%) on the GRD task.

Method SPR
Acc.↑

CMP
Acc.↑

CNT
MAE↓

MES-H
MAE (m)↓

MES-D
MAE (m)↓

InternVL 64.2 30.3 1.8 102.8 115
TEOChat 53.7 63.6 3.8 236.2 205.6
GeoProg3D 71.6 78.8 1.4 13.6 20.1
GeoProg3D+RQ 71.8 78.8 1.3 13.2 18.6

Table 9. Performance of SPR, CMP, CNT, and MES tasks.

As the tables show, the performance of GeoProg3D with
rephrased queries (GeoProg3D+RQ) is comparable to its
performance with the original queries across all tasks. For
instance, the SPR accuracy is 71.6% for the original queries
and 71.8% for the rephrased ones, and the MAE for the
MES-D task is 20.1m and 18.6m, respectively. This mini-
mal difference in performance indicates that our framework
is not reliant on specific keywords or phrasing. Instead, it
demonstrates a strong ability to understand the semantic in-
tent of a query and translate it into a correct executable pro-
gram, highlighting the robust generalization capabilities of
our approach.

ID Original queries

1 How many buildings are there?
2 There are at least two streets facing BldgA.
3 There are 2 or less buildings to the directly west of BldgA.
4 Which is taller, the tallest object around BldgA or BldgB?
5 There are 2 or more grass areas to the directly west of BldgA.
ID Rephrased queries

1 What is the total number of buildings?
2 BldgA faces at least two streets.
3 At most two buildings stand directly to the west of BldgA.
4 Which is taller, the tallest object surrounding BldgA or BldgB?
5 To the direct west of BldgA, there are two or more grassy areas.

Table 10. Examples of test queries rephrased by LLM.

B. Implementation details
To extract object masks, the SAM model using the ViT-
H backbone was used. For extracting CLIP features, the
OpenCLIP ViT-B/16 model was used. The tree-structure
is implemented by utilizing the LoG rendering implemen-
tation [60]. Each training stage is repeated 2,000, 15,000,
and 30,000 times for the Google Earth dataset, and 300,000,
600,000, and 500,000 times for the UrbanScene3D dataset.
Our autoencoder is implemented using an MLP, which com-
presses 512-dimensional CLIP features into 3-dimensional
latent features. For GoogleEarch scenes, each composed of
60 images in with a resolution of 958×538, training took
about 15 minutes on an NVIDIA Quadro RTX 8000 GPT
using 2GB of memory. For the UrbanScene3D scene com-
posed of 5,871 images with a resolution of 1620×1080,
training took about 6 hours using 40GB of memory. The



Test Scene Area (m2) LSeg LERF LangSplat GCLF GeoProg3D

Center Blvd 2.7 × 105 0.03 0.07 7.69 19.23 42.31
World Fin Ctr 4.7 × 105 0 0.05 20.00 16.00 44.00
Mott St 1.7 × 105 0 0.05 10.71 17.86 53.57
Washington Sq 1.3 × 105 0.01 0.08 18.18 27.27 40.91
Campus 5.0 × 106 0.01 OOM OOM 6.98 30.23

Table 11. Localization accuracy (%) for GRN task by scene.

Test Scene Area (m2) LSeg LERF LangSplat GCLF GeoProg3D

Center Blvd 2.7 × 105 0.04 0.15 4.28 6.10 19.74
World Fin Ctr 4.7 × 105 0 0.08 6.03 6.31 16.12
Mott St 1.7 × 105 0 0.05 5.21 7.56 25.60
Washington Sq 1.3 × 105 0 0.18 5.22 6.80 11.12
Campus 5.0 × 106 0.05 OOM OOM 3.78 8.74

Table 12. 3D semantic segmentation performance for GNR task
by scene. IoU scores (%) are reporeted.

total number of images used for training is 6,111.

C. Technical contributions of GCLF
Our central contribution in designing GCLF lies in address-
ing the challenge of geometric distortion that arises from
a naive integration of existing methods like LangSplat [53]
and hierarchical representations [60]. To tackle this issue,
GCLF employs a two-stage training strategy. First, it aligns
the 3D Gaussians with real-world coordinates by referenc-
ing 2D geographic information from OpenStreetMap, and
then freezes their geometric configuration. Subsequently, it
learns hierarchical language features upon this fixed struc-
ture. This unique approach establishes GCLF as the first
large-scale, hierarchical 3D language field for city-scale en-
vironments, achieving both high-fidelity scene representa-
tion and efficient language query processing.

D. Detailed results and analysis
GRD task. Tables 11 and 12 present the grounding per-
formance by scene. In all scenes, GeoProg3D achieves sig-
nificantly higher performance compared to GCLF and other
baselines. Additionally, GCLF outperforms LangSplat in
most scenes in terms of segmentation performance, indicat-
ing that its high-quality 3D representation leads to improved
performance in the GRD task.
SPR task. Table 13 presents the spatial reasoning perfor-
mance by scene, demonstrating that GeoProg3D achieves
the highest or competitive accuracy in all scenes. Its accu-
racy remains above 60% in every scene, showcasing strong
generalization across diverse environments. The other mod-
els including GeoChat and Llama-3.2 Vision perform mod-
erately well but lag behind, while GPT-4o Vision struggles
with accuracies below 40% in most cases.
CMP task. Table 14 shows that GeoProg3D outperforms

the other models in three out of four scenes for the CMP
task. While Llama-3.2 Vision shows strong performance
in Center Blvd (73.68%), its accuracy drops significantly
in the other scenes. InternVL2.5 and VHM perform mod-
erately well but fall short of GeoProg3D. LLaVA-1.5 and
GPT-4o Vision struggle significantly, with the latter show-
ing near-zero performance across most scenes.
CNT task. As shown in Table 15, GeoProg3D also demon-
strates strong performance in the CNT task, achieving
competitive Mean Absolute Error (MAE) values across all
scenes. While LHRS-BOT achieves slightly better MAE in
Center Blvd (1.54), GeoProg3D consistently performs well,
maintaining low MAEs across all scenes. LLaVA-1.5 and
GPT-4o Vision show higher errors, indicating limited relia-
bility in this task. Qwen2.5-VL and Llama-3.2 Vision per-
form moderately but lack the consistency shown by Geo-
Prog3D. Table 19 and Figure 9 show the average of ground
truth counts by scene and a comparison of predicted and
ground-truth counts, respectively. The R-squared values
in Figure 9 indicate that methods other than GeoProg3D
poorly align with the ground truth distribution. These meth-
ods often output “1” as the answer to the query, which may
explain the smaller MAE observed in some cases for the
Center Blvd scene. These results highlight GeoProg3D’s
capability to balance precision and generalization in diverse
counting scenarios.
MES task. Table 16 shows that GeoProg3D demonstrates
superior performance in both height (MES-H) and distance
(MES-D) measurement tasks across most test scenes, as in-
dicated by its consistently low MAE values. For MES-H,
GeoProg3D outperforms the other methods in the scenes
except for Mott St. In the Mott St scene, there are 26
queries for MES-H, and GeoProg3D was unable to provide
answers for 3 of them. This issue is caused by an error in
the program generation by the LLM. Additionally, the Mott
St scene contains many low-lying buildings (as shown in
the rightmost scene in Figure 11), where baseline method
achieves low error by consistently providing monotonous
responses with small values, as illustrated in Figure 10. For
MES-D, GeoProg3D achieves the lowest MAE across all
test scenes, highlighting its precision in distance measure-
ment. Notably, while most methods struggle with higher
errors in a large environment like Campus, where GPT-4o
Vision has an MAE exceeding 1500 meters, GeoProg3D
showed superior performance on this scene.
Ablation study using different LLMs. Table 18 compares
the performance of GeoProg3D using different LLM back-
bones, specifically GPT-3.5 and GPT-4o, across three tasks:
GRD, SPR, and CMP. The results indicate that GPT-4o con-
sistently outperforms GPT-3.5 across all tasks, with notable
improvements in CMP (64.76% compared to 59.7%). The
differences in GRD and SPR are smaller. The improve-
ments in CMP are particularly significant, indicating GPT-



Spatial Reasoning: Accuracy (%) ↑

Test Scene LLaVA-1.5 Llama-3.2 Vision GPT-4o Vision Qwen2.5-VL InternVL2.5 GeoChat TEOChat LHRS-BOT VHM GeoProg3D

Center Blvd 47.88 49.23 37.98 56.86 56.45 58.41 58.41 49.43 63.47 60.17
World Fin Ctr 47.78 62.65 24.86 52.21 43.23 61.67 61.04 53.19 50.75 67.14
Mott St 52.12 53.87 16.08 50.73 57.38 58.41 61.55 50.37 52.78 67.18
Washington Sq 56.02 53.62 20.17 53.74 60.01 50.41 55.17 44.83 51.18 61.52
Campus 46.04 57.34 15.18 47.24 52.47 56.76 57.99 41.94 56.92 60.87

Table 13. SPR performance by scene. LLaVA-1.5 [39], Llama-3.2 Vision [47], GPT-4o Vision [51], Qwen2.5-VL [2], InternVL2.5 [10],
GeoChat [33], TEOChat [21], LHRS-BOT [50], VHM [52] and GeoProg3D are evaluated.

Comparison: Accuracy (%) ↑

Test Scene LLaVA-1.5 Llama-3.2 Vision GPT-4o Vision Qwen2.5-VL InternVL2.5 GeoChat TEOChat LHRS-BOT VHM GeoProg3D

Center Blvd 21.05 73.68 0.00 26.32 57.89 26.32 57.89 5.26 36.84 63.16
World Fin Ctr 42.11 21.05 10.53 52.63 31.58 52.63 31.58 36.84 36.84 68.42
Mott St 36.84 10.53 0.00 15.79 36.84 36.84 42.11 15.79 42.11 42.11
Washington Sq 47.83 8.70 0.00 13.04 47.83 52.17 60.87 52.17 43.48 65.22

Table 14. CMP performance by scene. LLaVA-1.5 [39], Llama-3.2 Vision [47], GPT-4o Vision [51], Qwen2.5-VL [2], InternVL2.5 [10],
GeoChat [33], TEOChat [21], LHRS-BOT [50], VHM [52] and GeoProg3D are evaluated.

Counting: MAE ↓

Test Scene LLaVA-1.5 Llama-3.2 Vision GPT-4o Vision Qwen2.5-VL InternVL2.5 GeoChat TEOChat LHRS-BOT VHM GeoProg3D

Center Blvd 2.23 1.77 1.77 2.00 1.85 3.15 2.46 1.54 4.62 1.92
World Fin Ctr 2.86 2.86 3.07 2.14 3.00 2.71 2.93 2.71 2.21 1.93
Mott St 3.84 2.83 3.68 3.58 3.42 2.95 2.89 10.63 7.68 1.63
Washington Sq 3.39 2.70 3.57 2.87 2.91 2.74 3.09 4.52 6.61 2.52
Campus 4.23 3.54 4.29 4.00 4.23 3.69 4.06 3.49 4.34 2.51

Table 15. CNT performance by scene. LLaVA-1.5 [39], Llama-3.2 Vision [47], GPT-4o Vision [51], Qwen2.5-VL [2], InternVL2.5 [10],
GeoChat [33], TEOChat [21], LHRS-BOT [50], VHM [52] and GeoProg3D are evaluated.

Measurement (Height): MAE (m↓)

Test Scene LLaVA-1.5 Llama-3.2 Vision GPT-4o Vision Qwen2.5-VL InternVL2.5 GeoChat TEOChat LHRS-BOT VHM GeoProg3D

Center Blvd 418.37 85.18 231.21 71.53 57.79 124.05 193.58 61.05 53.00 50.99
World Fin Ctr 349.89 104.78 198.26 90.58 91.26 53.68 184.32 68.21 59.26 58.16
Mott St 962.12 43.35 167.73 37.88 18.58 62.12 107.62 22.65 69.27 56.28
Washington Sq 699.09 118.91 35.43 38.74 37.57 99.09 116.04 32.78 28.78 15.52

Table 16. MES-H performance by scene. LLaVA-1.5 [39], Llama-3.2 Vision [47], GPT-4o Vision [51], Qwen2.5-VL [2], InternVL2.5 [10],
GeoChat [33], TEOChat [21], LHRS-BOT [50], VHM [52] and GeoProg3D are evaluated.

Measurement (Distance): MAE (m↓)

Test Scene LLaVA-1.5 Llama-3.2 Vision GPT-4o Vision Qwen2.5-VL InternVL2.5 GeoChat TEOChat LHRS-BOT VHM GeoProg3D

Center Blvd 169.95 199.07 196.84 164.47 165.42 82.58 164.42 160.16 141.05 61.60
World Fin Ctr 460.21 220.00 285.05 219.79 239.79 129.05 178.47 212.11 162.47 67.94
Mott St 306.58 162.47 164.68 162.47 125.21 103.32 264.05 160.37 142.47 55.00
Washington Sq 98.95 123.81 283.10 155.05 98.14 60.86 188.62 118.57 96.00 28.71
Campus 837.11 427.94 1583.48 412.86 318.71 328.68 359.71 438.94 354.91 139.51

Table 17. MES-D performance by scene. LLaVA-1.5 [39], Llama-3.2 Vision [47], GPT-4o Vision [51], Qwen2.5-VL [2], InternVL2.5 [10],
GeoChat [33], TEOChat [21], LHRS-BOT [50], VHM [52] and GeoProg3D are evaluated.

LLM GRD SPR CMP

GPT-3.5 45.20 64.00 59.73
GPT-4o 46.09 64.40 64.76

Table 18. Ablation of GeoProg3D using different LLM backbones.

4o’s ability to handle more complex tasks. This highlights
the potential to enhance GeoProg3D’s performance across a

wide range of metrics by utilizing an advanced LLM back-
bone, depending on the available budget.
Reconstruction quality. Figure 11 compares the image
reconstruction quality of GCLF and a vanilla 3D-GS in sev-
eral scenes. As a result of training with the same number of
epochs, the vanilla 3D-GS lacks texture details.
Statistics. Table 1 presents statistics for LangSplat and
GCLF in terms of the number of Gaussians and inference
speed across various scenes. GCLF consistently generates
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Figure 11. Comparison of 3D scene reconstruction quality between 3D-GS and GCLF.

significantly more number of Gaussians than LangSplat,
achieving more detailed representations. However, this re-
duces the rendering speed, as LangSplat is consistently

faster across all cases. These results highlight the trade-
off between achieving detailed scene representations and
maintaining computational efficiency. Nevertheless, GCLF



Scene Avg. CNT Avg. MES-H Avg. MES-D

Center Blvd 2.31 75.21 161.21
World Fin Ctr 3.07 96.74 220.00
Mott St 3.74 37.88 162.47
Washington Sq 3.61 40.04 123.81
Campus 4.31 - 427.94

Overall 3.63 59.46 284.94

Table 19. Average ground truth values for CNT, MES-H, and
MES-D queries.

Figure 12. Word count and query distributions. GeoEval3D con-
tains 952 unique queries covering five tasks. Queries include more
words than those in the previous evaluation datasets, indicating
complexity of the proposed.

demonstrates practical usability, as they are capable of
querying even large-scale data within realistic time frames,
ensuring their suitability for real-world applications.

E. Qualitative examples
Visualization of CLIP features. Figure 14 visualizes CLIP
features projected into a three-dimensional feature space us-
ing an autoencoder during the training of the GCLF. As il-
lustrated, buildings and their surroundings are grouped into
distinct clusters.
Viewpoint-independent localization by GCLF. Since the
VLMs that are compared in the versatility experiment
can only process 2D images, all methods, including Geo-
Prog3D, are input with top-down view images. Informa-
tion from directly above is not sufficient for searches related
to the sides of buildings and signboards. However, GCLF
boosts the high performance of GeoProg3D by localizing
it to take into account the characteristics of structures that
cannot be seen from directly above. Figure 13 shows exam-

ples of SPR and MES-H that have succeeded in reasoning
in GeoProg3D with viewpoint-independent localization. In
SPR, the red lettering signboard is not visible in the top-
down view used for inference, but it is correctly activated
in the localization of the inference process. In MES-H,
whether a building is glass-fronted or not cannot be seen
in the top-down view, but localization succeeded.
Qualitative examples. Figure 15 shows additional qualita-
tive examples, demonstrating the capability of GeoProg3D
across various tasks and environments. Figure 16 illustrates
the output obtained by executing a notebook included with
our code. Figure 17 shows examples of language-guided
3D Gaussian editing as an additional task. This editing task
requires models to localize the object and modify it based
on a given query qk.

F. Dataset details
To further ensure the quality and reliability of the dataset,
we evaluated the inter-annotator agreement. For the SPR
task, annotations from two independent annotators showed
substantial agreement with a Cohen’s Kappa of 0.78. For
the MES-H and MES-D tasks, we observed high agree-
ment as well, with Pearson correlation coefficients of 0.81
and 0.95, respectively. These results confirm that our an-
notations are consistent and reliable. Furthermore, for the
SPR task, we explicitly instructed annotators to maintain a
balanced label distribution, resulting in approximately 54%
”yes” and 46% ”no” answers to avoid potential bias.



SPR Query: The red lettering signboard is within 200 meters of The View.

Input image for inference.
A view showing the red lettering signboard.

It is not used for inference. Object mask in the input image.

GT: yes, Pred: yes

SPR Query: How tall is the glass building?

Input image for inference.
A view showing the side of the glass building.

It is not used for inference. Object mask in the input image.

GT: 228, Pred: 220

SPR

MES-H

GCLF activation for 

red lettering signboard.

GCLF activation for 

glass building.

The View

red lettering signboard

glass building

Figure 13. Examples of viewpoint-independent localization by GCLF.
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Figure 14. Visualization of CLIP features for training 3D language fields.



GRD

Program: 

SEG1=GetLandmarkSeg(query='225 Liberty Street')

SEG2=SegAround(seg=SEG1,distance=150)

ANSWER1=GetStructureSeg(query='pier',area=SEG2)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: Pier within 150 meters of 225 Liberty Street

CNT

Program: 

SEG1=GetLandmarkSeg(query='Vanderbilt Hall')

SEG2=SegDirection(seg=SEG1,direction='directly east')

ANSWER1=GetObjectSeg(query='solar panels',area=SEG2)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: How many solar panels are there directly east 

of Vanderbilt Hall?

MES-D

Program: 

SEG_TO1=GetLandmarkSeg(query='DO, Cookie Dough Confections')

AREAS1=GetStructureSeg(query=' reddish building with a curved roof ')
SEG_FROM1=LargestSeg(seg=AREAS1, cluster_type='BIGGEST')

ANSWER1=MeasureDist(from=SEG_FROM1, to=SEG_TO1)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: How far is DO, Cookie Dough Confections from reddish building with a 

curved roof?

CMP
Query: Which is taller, Elmer Holmes Bobst Library or Henry Kaufman 

Management Center?

SPR
Query: Is the glass-walled building closer to 200 Vesey Street than 300 

Vesey Street?

GRD

Program: 

SEG1=GetLandmarkSeg(query='The View')

SEG2=SegDirection(seg=SEG1,direction='north')

ANSWER1=GetStructureSeg(query='tennis court',area=SEG2)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: The tennis court north of The View.

GRD

Program: 

SEG1=GetLandmarkSeg(query='Heyman Hall')

SEG2=SegAround(seg=SEG1)

ANSWER1=GetStructureSeg(query='sedan-type automobiles',area=SEG2)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: Sedan-type automobiles around Heyman Hall.

GRD

Program: 

SEG1=GetLandmarkSeg(query='7 World Trade Center')

SEG2=SegDirection(seg=SEG1,direction=‘west')

ANSWER1=GetStructureSeg(query=‘Grass-walled building',area=SEG2)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: Grass-walled building west of 7 World Trade Center.

GCLF

GCLF

GCLF

MES-H

Program: 

AREAS1=GetStructureSeg(query='reddish building with a curved 

roof')

ANSWER1=MeasureHeight(seg=AREAS1)

FINAL_RESULT=RESULT(var=ANSWER1)

Query: How tall is the reddish building with a curved roof?

Program:

AREAS1=GetStructureSeg(query=' glass-walled building')

SEG_TO1=LargestSeg(seg=AREAS1,cluster_type='BIGGEST')

SEG_FROM1=GetLandmarkSeg(query=‘200 Vesey Street')

SEG_TO2=GetLandmarkSeg(query=‘300 Vesey Street')

ANSWER1=MeasureDist(from=SEG_FROM1, to=SEG_TO1)

ANSWER2=MeasureDist(from=SEG_FROM1, to=SEG_TO2)

ANSWER3=EVAL(expr="'yes' if {ANSWER1} < {ANSWER2} else 'no'")

FINAL_RESULT=RESULT(var=ANSWER3)

Program:

SEG1=GetLandmarkSeg(query='Elmer Holmes Bobst Library')

ANSWER1=MeasureHeight(seg=SEG1)

SEG2=GetLandmarkSeg(query='Henry Kaufman Management Center')

ANSWER2=MeasureHeight(seg=SEG2)

ANSWER3=EVAL(expr="'Elmer Holmes Bobst Library' if {ANSWER1} > {ANSWER2} else 

'Henry Kaufman Management Center'")

FINAL_RESULT=RESULT(var=ANSWER3)

Answer

Answer

Answer

GCLF

GCLF

GCLF

SEG2

SEG2

AREAS1 GT: 53 Answer: 55

SEG_TO1 AREA (Top view)

GT: 129 Answer: 138

AREA (Top view) SEG_TO

Answer

GT: 1, Answer: 1

148m

225m

GT: yes, Answer: yes

68.7m

69.8m

GT Height: 61 GT Height: 69

Answer: Henry Kaufman Management Center

68.7 < 69.8

Figure 15. Other qualitative results.



Figure 16. Visual rationales generated by GeoProg3D.



Edited by “Remove Trinity Church" Edited by “Stretch Trinity Church"Original 3D Gaussians

Edited by "Shrink the building directly west of Quik Park" Edited by “Stretch the building directly west of Quik Park"Original 3D Gaussians

Edited by "Shrink the hexagonal building" Edited by “Remove the hexagonal building"Original 3D Gaussians

Figure 17. Examples of language guided 3D Gaussian editing.
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