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Supplementary Material

6. More Implementation Details

6.1. Model specific settings

In the setup of Sec. 3.2, we consider the specific character-
istics of scene text: L is set to 25, and PM is configured
to 128, assuming a background color of 255. It is worth
noting that our method is not limited to this configuration.
This configuration theoretically enables the generation of
text up to 255 characters in length, allowing for background
color selection from 255 and character values from 0 to 254.
Each character image is set to a 64→64 square, resulting in
a character glyph image of size 25→64→64. The deformed
ViT is configured with a patch size of 8, generating a latent
feature vector of size 65→1024, where 1024 represents the
dimensionality of the control information required by the
CDM.

After passing through the VAE in Sec. 3.3, the dimen-
sions of outputs are uniformly [4, 16, 16], while ZM is
formatted as [1, 16, 16]. These are concatenated to form
[13, 16, 16]. Therefore, the Conv2d Layer has an input di-
mension of 13 and an output dimension of 4, producing an
output of [4, 16, 16] to match the original input dimensions
of the U-Net.

To meet the rendering requirements for visible characters
in the majority of languages, we utilize to employ Puhui
Font, an open-source and commercially-free font tool. It
adheres to the latest Chinese national standard, GB18030-
2022, and supports 178 languages.

6.2. More Details for Datasets

We will further elaborate on the data processing related to
training and generation.

Training Data. To train our generative model, we utilize
the large-scale multilingual text image dataset, AnyWord-
3M [41]. It contains real annotated text boxes and text
contents, designed for scene text detection and recogni-
tion tasks, which we collectively call AnyWord-Scene.
This collection includes a range of popular datasets such
as ArT [6], COCO-Text [42], RCTW [37], LSVT [40],
MLT [28], MTWI [16], and ReCTS [55]. In addition, two
larger datasets are included: AnyWord-Wukong [14] and
AnyWord-Laion [34], which provide a large collection of
images with bounding boxes and text content obtained by
the PP-OCRv3 [23] detection and recognition model. We
filter out anomalous images with pure white backgrounds
from the AnyWord-3M dataset. Ensuring that when crop-
ping local images, we minimize the inclusion of white bor-
ders, thereby reflecting real-world conditions. The pro-
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Figure 7. The pipeline comparison between TextSSR and previous
methods. In (c), “optional” indicates that either or both options
should be provided. And in (d), it means that the base image can
be used with or without text.

cessed AnyWord-Wukong and AnyWord-Laion datasets to-
gether contain a total of 3,430,412 complete images, from
which we crop 14,856,392 local regions containing text in-
stances for the first training stage. In the second train-
ing stage, we utilize 78,395 full images from processed
AnyWord-Scene, cropping 201,599 text regions from these.

Computational Overhead and Runtime Efficiency.

The training times for our three stages (VAE fine-tuning,
UNet pretraining, and UNet fine-tuning) are 192, 400,
and 200 GPU-hours, respectively. For inference, us-
ing a single RTX-3090 GPU with diffusion steps=20 and
batch size=32, 5k batches take 26 hours, averaging 0.59
seconds per image.

Data for Accuracy Evaluation. Meanwhile, in Accu-
racy Evaluation we employ datasets that the model has not
previously encountered. They represent a range of image
difficulty levels and cover multiple languages. Specifically,
we use the following datasets for evaluation:
• IC13 [21]: This benchmark is designed for relatively reg-

ular text detection and recognition. We use 233 full im-
ages and 917 cropped text images from the test set for
evaluation.

• IC15 [22]: This dataset contains more challenging real-
world scene text, derived from incidental scene captures
where the text was not the primary focus. We employ 500
full images and 2,077 cropped text images for evaluation.

• Shopsign [54]: This dataset consists of Chinese scene



Method
French German Japanese Traditional Chinese

SeqAcc(%)→ NED→ FID-R↑ SeqAcc(%)→ NED→ FID-R↑ SeqAcc(%)→ NED→ FID-R↑ SeqAcc(%)→ NED→ FID-R↑

TextDiffuser 12 0.2953 231.47 5 0.1707 240.55 0 0.0014 280.95 0 0.0011 259.46
GlyphControl 0 0.0188 268.63 0 0.0264 277.10 0 0.0000 276.20 0 0.0011 261.79

AnyText 24 0.4508 181.22 16 0.3276 198.34 3 0.1696 215.89 21 0.3557 208.85
TextDiffuser2 9 0.2891 169.56 6 0.2178 208.04 0 0.0015 230.02 0 0.0080 190.93

TextSSR 68 0.8024 107.78 75 0.8734 102.86 24 0.5545 127.87 55 0.7304 112.81

Real 94 0.9858 0 94 0.9810 0 83 0.9562 0 98 0.9967 0

Table 6. Quantitative comparison of multilingual text image generation methods. For each language, 100 images are used for test.

text, primarily from shop signs. We selecte 183 full im-
ages and 932 cropped text images from this dataset.
Base Data for Scalable Generation. We utilize the Tex-

tOCR [39], a large-scale scene text dataset including 25,119
images, as the base images for synthetic data generation.
To mimic realistic conditions where unlabeled data is abun-
dant, we use pseudo-labels generated by the PP-OCRv3
model, thus simulating a scenario without human annota-
tion.

Generation of TextSSR-F. After the previous step,
we obtain 188,526 text regions annotated by the PP-
OCRv3 [23] model. Based on the anagram method (de-
scribed in Section 3.4), we expand the data and filter
with the SVTRv2 [11] model, yielding a final dataset
of 3,551,396 fully usable text instances, referred to as
TextSSR-F.

Quality Filtering Bias Our filtering process employs a
double-check mechanism: given the label the generation
model attempts to generate, and SVTRv2 is used to ver-
ify that the recognized text matches the label. An error oc-
curs only if both the generation model and SVTRv2 fail si-
multaneously. This pipeline ensures the correctness of most
TextSSR-F instances. To validate this, we randomly sam-
ple 300 instances from TextSSR-F and recruit three asses-
sors each checking 100 instances. The average accuracy is
98.67% (98%, 98%, 100%).

Impact of Pseudo-Labeling When OCR pseudo-label
errors occur, the generation process still attempts to follow
the pseudo-labels (see examples in Fig. 8), so the side im-
pact is relatively limited.
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Figure 8. Examples of correct rendering despite incorrect English
and Chinese pseudo-labels.

6.3. Training and Evaluation Details

6.3.1. Training Details

We fine-tune our generative model using Stable Diffusion
2.1 (SD 2-1) [33] on eight NVIDIA 3090 GPUs. First,
we train the VAE on the full AnyWord dataset with a to-
tal batch size of 512 and 256x256 image patches for 150k

steps. Then, we freeze the VAE and train the CDM in
two stages: 50k steps on AnyWord-Wukong and AnyWord-
Laion datasets to pre-train, followed by 25k steps on the
AnyWord-Scene dataset to fine-tune, using a total batch size
of 256.

6.3.2. Accuracy Evaluation Details

For a fair comparison in our accuracy evaluation, we ren-
der all visible bounding boxes and contents annotated in the
test datasets. In cases where certain models could not ren-
der longer texts or handle multiple text instances per image,
we will restrict the input information to within their accept-
able ranges, while padding the missing portions. Our model
is also limited, with only the first 25 characters rendered
for single-character features. For all models, the number of
timesteps in the sampling process is set to 20. The evalua-
tion code for generated results is based on the open-source
evaluation scripts from AnyText [41] and UDiffText [57].
Except for GlyphControl [50], which requires additional
image descriptions to function properly, the other methods
only use their predefined text prompts.

6.3.3. Expanded Multilingual Evaluation

We have added four languages (French, German, Japanese,
and Traditional Chinese) and use the multilingual version
of SVTRv2 for evaluation (see Tab. 6). We also provide il-
lustrative examples in Fig. 9 to validate the generalization
to non-English languages. TextSSR generates correct in-
stances while others mostly fail.

6.3.4. Realism and Scalability Evaluation Details

In the Realism and extended experiments, CRNN is
trained [1] with a batch size of 64 on a single 3090 GPU
for 10k steps. The data augmentation configurations preset
in the codebase are utilized throughout the training process.

6.3.5. Usability Assessment Details

In the Usability experiments, we train two widely-used STR
models—CRNN [36], and MAERec [20]—on the gener-
ated data to assess the effectiveness of our synthetic data in
enhancing STR performance. All models are trained using
the OpenOCR framework, with a total batch size of 1024
on four 3090 GPUs for 20 epochs.



GroundTruth TextDiffuser GlyphControl AnyText TextDiffuser-2 TextSSR

Japanese
German

Traditional Chinese

French

Figure 9. Visualization of synthesized multilingual examples.

To vividly demonstrate that TextSSR significantly en-
hances the performance of STR models under challeng-
ing scenarios, we conduct a small-scale validation experi-
ment. In this experiment, we limit the dataset size to 429k
and employ an identical NRTR [35] model trained under
the same configuration for comparison. The experimental
results indicate that the model trained on TextSSR-F ex-
hibits more realistic performance when dealing with chal-
lenging text conditions such as perspective distortion and
blurring. We provide visual comparisons in Fig. 10, show-
casing TextSSR’s superior performance in recognizing low-
resolution and perspective-distorted text.
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Figure 10. Visualization of recognition results on NRTR.

6.3.6. Ablation Study Details

The ablation study can be considered a simplified version
of the second stage of training, with all settings kept consis-
tent except for the reduction of training steps to 5k. To align
with the full-image inference process used in other meth-
ods, the image size is set to 512→512, although training is
conducted at a resolution of 256. The “Char-Glyph” abla-
tion experiment involves removing the condition from the
CDM training, while the “Char-Position” ablation renders
all characters uniformly at a pixel value of 127.

7. Visualization

7.1. Visualization Analysis

Fig. 4 sequentially simulates various situations, including
English text in a regular scene, text under challenging con-
ditions, and Chinese text in a natural setting. TextSSR
consistently generates accurate and high-quality visual text,
demonstrating several powerful capabilities: (1) it can syn-
thesize arbitrary text with standard glyphs from any lan-
guage, as shown in examples of both Chinese and English;
(2) it learns font style information from surrounding con-
text, such as the font color in Sample 1, which is derived

from the horizontal line below; (3) it synthesizes correct text
even without strong background information, as illustrated
in Sample 2, where the local image provides no usable in-
formation for imitation; and (4) it exhibits scale invariance,
allowing for text synthesis in scenes of any size, with the
three samples representing large, small, and medium text
sizes, respectively.

7.2. Function Demonstration Platform

We have concretely implemented the inference process and
build a demonstration demo. To ensure that the user input
matches the label format used during training, we recalcu-
late text boxes that align with the input text location after
the user applies the mask. As shown in Fig. 12, the text is
roughly displayed within the user-specified area, though it
does not follow the mask strictly.

7.3. Ablation Visualization Results

Fig. 13 and Fig. 11 illustrate the impact of character-level
position and glyph on the rendering results of TextSSR.
The results indicate that omitting either component leads to
issues such as character deformation, incorrect characters,
and duplication errors in some cases, further supporting the
findings of the ablation study.

7.4. More Visualization Results

To provide a detailed illustration of the synthesis process
and effectiveness of TextSSR, Fig. 14 illustrates TextSSR’s
synthesis process, showing how it reconstructs local im-
ages from original regions and crops them to obtain fi-
nal results. Comparisons with ground truth demonstrate
TextSSR’s strong synthesis capabilities across diverse sce-
narios, including regular text, low-resolution text, curved
text, perspective text, multilingual text and multi-oriented
text.

7.5. Failure Cases

It is important to note that our synthesis method is not flaw-
less and has certain limitations. Fig. 15 presents several
common failure cases, which can be attributed to the fol-
lowing reasons:
1. Long text: Excessively long text can confuse the model,

resulting in disordered text images. This issue is exac-
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Figure 11. Visualization results of TextSSR with and without character-level glyph prior.
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Figure 12. Users will select a scene image as the base, perform
mask marking in the designated area, and then input the text con-
tent to be written. After processing, the desired text region and the
edited original image will be obtained.

erbated by the limited amount of training data for such
cases.

2. Blurred regions: When the text region itself is exces-
sively blurred, the model struggles to accurately recon-
struct and synthesize the text.

3. Multi-directional text: The model, primarily trained on
horizontally aligned text, faces challenges with multi-
directional text, especially vertical text. Applying
rotation-based post-processing, as used in STR methods,
could be a potential solution.

4. Incorrect text labels: Errors in manual labeling can
lead to mismatches between the rendered regions and
their corresponding labels.

5. Language Characteristics: The performance on Chi-

nese text is generally worse than on English, due to the
higher number of characters and the complexity of Chi-
nese characters.
Despite the minority in quantity, handling challenging

text instances are also important. We plan to tackle these in-
stances as follows: splitting long text into shorter segments,
simulating blur by adding noise and augmenting multi-
directional text via rotation based on common instances,
leveraging render-based data for pretraining on multilingual
characters, etc.

8. Discussion

However, our study has limitations and avenues for fur-
ther research, including the following: (1) The text loca-
tion and the text content must be paired. While we utilize
the anagram-based method to mitigate this issue, we will
design methods for reasonable, large-scale usable pairings
for broader synthesis considerations. (2) Currently, large-
scale synthetic post-processing relies on an STR model; we
aim to integrate a self-checking mechanism into the entire
framework to verify the correctness of the synthesized out-
put. This could further enhance learning and adjust the ar-
rangement of text location until generating usable text cor-
rectly. (3) Due to available large-scale scene text images al-
ready used for training, we plan to collect a larger dataset of
untrained text images for the base images, creating a more
extensive synthetic dataset to benefit the STR community.
(4) Although the generation is related to the surrounding
context, currently TextSSR does not fully address this issue
due to lack of customized design. However, by substituting
certain TextSSR component, e.g., the anagram expansion,
or using LLM to recommend contextually appropriate con-
tent, TextSSR can largely alleviate it while the rest TextSSR
components can still be reused. We will improve the seman-
tic diversity and contextual realism from these aspects in fu-
ture. (5) While our primary focus is on STR, our approach
can also benefit other downstream tasks. For example, by
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Figure 13. Visualization results of TextSSR with and without character-level position prior.

directly writing text onto the background or editing original
text, our method can generate new data for text detection
and document understanding tasks. We also agree that do-
main generalization is a valuable topic. We will investigate
other downstream applications and discuss broader special-
ized domains in future.



TextSSR RegionScene Text Image
Scene Text Region
————————

Text Content
TextSSR Output

Bernd

Summer’s

LINK

Care

手套

133333851288

A2区11排623号

300

Network

HOPE

Sunbeam

Figure 14. More visualization results for TextSSR.



TextSSR RegionScene Text Image TextSSR Output
Scene Text Region
————————

Text Content

Informatikforschung

(Builders)

Talk

绰18238451063

Figure 15. Failure Cases. We show several disappointing synthesis results produced by TextSSR.


