ATAS: Any-to-Any Self-Distillation
for Enhanced Open-Vocabulary Dense Prediction

Supplementary Material

1. Semantic Coherence and Fine-Grained Vision-
Language Alignment
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Figure 1. ROC Curve on Pascal VOC. illustrating semantic coher-
ence of DINO, CLIP, and fine-tuned CLIP models.

Semantic Coherence There are conflicting perspectives on
CLIP’s semantic coherence. Studies such as PACL [14] and
CLIPtrase [16] emphasize CLIP’s inherent ability to effec-
tively align patch-level representations of semantically similar
regions. PACL further demonstrates that CLIP outperforms
other models, like DINO [3], in maintaining this coherence.
In contrast, ProxyCLIP [10] argues that CLIP’s coherence is
insufficient for aligning with global semantics, limiting its
applicability for dense prediction tasks. It suggests that mod-
els with stronger semantic coherence, like DINO, should be
used to enhance performance. The two methods take different
approaches to computing semantic coherence. PACL evalu-
ated semantic coherence based on feature correspondences [6],
whereas ProxyCLIP relied on attention scores [1]. Given that
our method employs feature correspondences for weighted
aggregation, we adopted the PACL approach for measuring
semantic coherence.

To explicitly assess CLIP’s semantic coherence in Fig. 1,
we conducted an experiment measuring its semantic coherence.
We followed the experimental settings proposed in PACL [14]
with some modifications due to practical constraints. Specifi-
cally, we computed patch embeddings using the CLIP vision
encoder on the Pascal VOC dataset and predicted whether two
patches belong to the same class based on cosine similarity.

Patch labels were assigned using majority voting, based on
the pixel-wise class annotations provided by the annotation
map. For each class in a batch of 128 images, we sampled 8
patches per image, resulting in comparisons between patches

Model Accuracy

CLIP 69.48
CLIPSelf 70.66

ATAS 82.46

Table 1. Patch-level classification accuracy. indicating fine-grained
alignment of CLIP and fine-tuned CLIP models.

Number of Image , Average
Top-k Grids Size | Accuracy
10 1 256 33.02
2 512 17.54

Table 2. Average Accuracy per Grids from Scene-Centric Dataset.

from different images within the same batch. The cosine
similarity was computed for all paired samples. For pairs
belonging to the same class, the target label was set to 1,
whereas for pairs from different classes, the target label was
set to 0.

Fine-Grained Vision-Language Alignment During the
pretraining of CLIP, contrastive learning utilizes the image
CLS token and text CLS token, without explicitly using lo-
cal patches. Consequently, many prior works have aimed to
enhance CLIP’s dense prediction capabilities by focusing on
aligning local patches. To empirically evaluate the degree
of alignment in CLIP in Tab. 1, we conducted an alignment
experiment as proposed in PACL. We predicted the class of
each patch by identifying the class whose text embedding has
the highest cosine similarity to the patch embedding. For this
experiment, we utilized all patch embeddings for each class
from every image in the Pascal VOC dataset and assigned
patch labels using the same method employed in the semantic
coherence experiments.

2. On the Selection of Data and Augmentation

2.1. Rationale for Choosing an Object-Centric
Dataset

Our goal is to enhance the performance of dense prediction
tasks by employing a self-distillation strategy for CLIP’s vi-
sion encoder [15]. In our framework, both the global image
embedding and local embeddings from the teacher model are



Datasets ~ Methods Resolution Segmentation Detection
CLIPSelf 1024 33.8 425
COCO I —Ztas 1024 37 1489
CLIPSelf 960 36.98 45.70
ImageNet 384 37.74 40.85
ATAS 576 38.51 43.59
960 39.34 46.38

Table 3. Performance Comparison Across Datasets and Resolu-
tions.

Mosaic Segmentation | Detection
mloU AP: 50
No mosaic 39.41 35.95
4 38.33 45.94
24 39.75 45.85
24,6 39.34 46.38

Table 4. Effect of different mosaic augmentation strategies on
dense prediction performance.

used as pseudo-labels. The teacher’s global embedding is
transferred to both the student’s global and local representa-
tions, so ensuring its semantic reliability is critical.

However, dense prediction models are often trained on scene-
centric datasets, such as COCO [11], which we find to be an
unreliable source of high-quality pseudo-labels, especially for
the global embedding. To quantify this issue, we evaluated
the region-level Top-10 accuracy on scene images, as shown
in Tab. 2. For this experiment, each image is divided into
grids, and each grid cell is classified via its CLS token. A
prediction is considered correct if any of the top-10 predicted
classes for a segment match the ground-truth labels of the en-
tire image. This evaluation revealed a sharp drop in accuracy,
from 33.02% for the whole image to just 17.54% when using a
2x2 grid. This result quantifies the poor semantic consistency
within scene-centric images and underscores their limitations
in generating reliable pseudo-labels for self-distillation.

The benefit of object-centric datasets for self-distillation is
evident in Tab. 3. Notably, our best performance occurs when
using ImageNet, indicating that object-centric supervision pro-
vides more reliable signals for dense prediction. CLIPSelf
shows the same trend, performing better with ImageNet than
with COCO. This underscores that object-centric data is es-
sential for obtaining a stable global embedding, which in turn
guides reliable learning of both global and local features.

2.2. Motivation for Mosaic Augmentation

We investigate the effectiveness of using object-centric
datasets for dense prediction tasks. However, as shown in
Tab. 4, using them without mosaic augmentation leads to a
significant drop in detection accuracy. This performance gap
stems from the limited scene complexity of object-centric
datasets, which typically contain fewer objects per image

Figure 2. Mosaic images for training.

than scene-centric datasets. As a result, models trained solely
on such datasets struggle with dense prediction in complex,
multi-object scenes. To address this limitation, we apply mo-
saic augmentation to synthesize training samples that include
multiple objects. We experiment with various mosaic config-
urations (2x2, 4x4, and 6x6), and observe that combining
these yields the best performance. These improvements vali-
date our hypothesis that multi-object awareness plays a crucial
role in dense prediction.

2.3. Implementation and Visualization of Mosaic
Augmentation

In this paper, we use a combination of 2x2, 4x4, and 6x6
mosaics. During training, we utilized 36 images to construct
mosaic images Tms. € R3*960x960 for VIiT-B, which we
randomly organized into either (1) a single 6x6 mosaic image
with 36 individual images, each of size x; € R3x160x160, (9
two 4x4 mosaic images, each containing 16 individual images
of size z; € R3*240%240 apd a single 2x2 mosaic image
with 4 individual images, each of size x;, € R3*480x480  Ap
example of mosaic augmentation is shown in Fig. 2. The
image on the left is an example of 2 X 2 mosaic image using
four 480 x 480 images and the image on the right is an
example of 4 x 4 mosaic image using 16 240 x 240 images.

3. Ablation-setting

We conducted ablation experiments on two tasks: zero-shot
scenarios in open vocabulary semantic segmentation and open-
vocabulary object detection. For both tasks, we utilized the
CLIP Vision Transformer(ViT) base model and applied our
proposed ATAS framework. The weights of the CLIP image
encoder were replaced with our trained models before ablation
studies.

In semantic segmentation, we adopted the MaskCLIP [21]
approach. Experiments were performed using this approach
on three datasets—Pascal-VOC [5], Pascal-Context [13], and
COCO-Stuff [2]—using the average mloU as evaluation met-
ric.

In object detection, we evaluate the detection performance of



Method Model VOC20 PC-59 COCO-Stuft ADE20 CityScapes Average
mloU mAcc mloU mAcc mloU mAcc mloU mAcc mloU mAcc mloU mAcc
CLIP 80.9 90.4 35.9 57.4 23.9 42.6 16.7 35.5 30.0 49.8 375 55.1
ClearCLIP CLIPSelf | 74.4 85.2 30.4 53.5 19.9 42.0 15.3 36.3 23.5 40.9 32.7 51.6
ATAS 824 92.5 33.8 59.6 22.8 47.3 17.0 40.7 28.5 49.7 36.9 58.0

Table 5. Results of open-vocabulary semantic segmentation in zero-shot scenarios. The model that achieved the best performance is
marked in bold, while the model with the second highest performance is marked with underline

F-ViT using OpenAl CLIP ViT-B, trained for 3 epochs with a
batch size of 64 on the OV-COCO dataset. The evaluation con-
siders Average Precision (AP) across all categories, including
both base and novel classes.

4. Additional results of ClearCLIP

In this paper, we investigate the zero-shot scenario for the
open-vocabulary semantic segmentation task, leveraging the
intrinsic capabilities of the CLIP Vision Transformer (ViT)
for dense prediction tasks. For this experiment, we applied
three models—CLIP [15], CLIPSelf [18] and ours—across
four different methods: (1) vanilla CLIP, (2) MaskCLIP [21],
(3) SCLIP [17] and (4) ClearCLIP [9]. We utilized the original
implementation of all methods, except for ClearCLIP.

ClearCLIP provides an in-depth analysis of the CLIP ViT
architecture and proposes three architectural modifications to
improve segmentation performance: (1) removal of the resid-
ual connection, (2) query-query self-attention, and (3) removal
of the feed-forward networks. To extract dense features xgus
from image = € RNXHxWxXC in CLIP ViTs,

¢ = Proj,(LN(2)),v = Proj,(LN(z)) (I

2

where Proj denotes projection layer, LN express layer normal-
ization and Attn represents self-attention.

These methods exhibit some architectural differences com-
pared to our approach. We utilize MaskCLIP [21] method to
extract dense features,

Tans = Proj(Attn(q, q) - v)

v = Proj, (LN(z)) 3)
Zam = @ + Proj(v) 4)
ZTdns = Lattn + FFN(LN(:L.dtm)) (5)

Where FEN denotes feed-forward network.

Unlike ClearCLIP, our method performs self-attention and
trains the feed-forward network. To minimize performance
variations resulting from structural differences, we conducted
experiments with two different versions of ClearCLIP.

Tatn = T + Proj(Attn(Q7 Q) ) U) (6)

While the results in Tab. 5 are based on the original ClearCLIP
method without residual connection. ATAS achieved superior
performance in both versions. Notably, when local represen-
tations were extracted using the original ClearCLIP method
in CLIPSelf, a drop in mloU was observed across all datasets
compared to OpenAl CLIP. In contrast, our method exhibited
more robust performance, with some datasets even showing
relative improvements. This highlights the robustness of our
approach in effectively managing the architectural differences
in the methods used for local representation extraction.

5. Exploring Architectural Differences in CAT-
Seg vl and v2

In this paper, we used two versions of CAT-Seg [4] for the
open-vocabulary semantic segmentation task. The CATSeg
used in CLIPSelf [18] underwent architectural modifications
and a refined model is now publicly available. To ensure fair-
ness in our comparison, we conducted experiments using both
versions of CAT-Seg.

Both CAT-Seg v1 and CAT-Seg v2 are trained on the COCO-
Stuff [2] dataset. Two versions employ a cost-aggregation
framework designed to align semantically similar local and
global representations. While both versions leverage CLIP
vision transformer(ViT) for extracting local features, CAT-
Seg vl also incorporates auxiliary feature extraction mod-
els: ResNet-101 [7] and Swin Transformer [12], which are
known to capture more localized representations compared
to the CLIP ViT. Specifically, ResNet-101 was paired with
ViT base, while the Swin Transformer was paired with ViT
large. In contrast, CAT-Seg v2 relies solely on CLIP ViT for
cost aggregation, achieving superior performance compared
to CAT-Seg v1. This suggests that CLIP’s intrinsic properties
contribute effectively to semantic segmentation tasks. Addi-
tionally, CAT-Seg v2 fine-tunes the CLIP text encoder during
training, whereas CAT-Seg v1 keeps it frozen.

We executed experiments comparing CLIP [15], CLIPSelf,
and ours on CAT-Seg. For CLIP and CLIPSelf, we utilized pre-
trained weights, while our method was trained from scratch.
All three models—CLIP, CLIPSelf, and ours—were applied to
CAT-Seg and trained from scratch. Our approach demonstrates
enhanced performance over both methods, while CLIPSelf
showed a performance drop in CAT-Seg v2. This indicates that



Method \ ADE-150 ADE-847

PC-59 PC-459 PAS-20 PAS-20b \ Average

SAN [20] 333 13.7 60.2 17.1 95.5 - -

SED [19] 352 13.9 60.6 22.6 96.1 - -

CAT-Seg (v1) 31.5 10.8 62.0 204 96.6 81.8 50.5
CAT-Seg (v1) + CLIPSelf 34.8 12.4 61.7 20.8 96.8 81.0 51.3
CAT-Seg (v1) + ATAS 34.1 12.4 62.5 21.3 96.6 81.5 514
CAT-Seg (v2) 379 15.9 63.0 24.0 96.7 81.9 532
CAT-Seg (v2) + CLIPSelf 37.6 15.7 63.0 23.9 96.7 82.0 53.2
CAT-Seg (v2) + ATAS 38.0 16.2 62.7 24.0 96.9 82.1 53.3

Table 6. Results of open-vocabulary semantic segmentation (mIloU) with CAT-Seg using the ViT-Large model.

Method OV-COCO OV-LVIS

APso AP APRY™ | mAP mAP. mAP; mAP,
F-ViT [18] 314 369 160 [ 141 114 197 83
F-ViT + CLIPSelf [18] | 42.5 469 298 | 20.1 162 238 216
F-ViT + ATAS 464 505 347 | 207 164 248 221

Table 7. Detailed results of open-vocabulary object detection with OpenAI CLIP on OV-COCO and OV-LVIS.

CLIPSelf heavily relies on specific training methods. In con-
trast, our approach emphasizes the importance of promoting
CLIP’s semantic coherence and fine-grained vision-language
alignment, which enhances its performance on dense predic-
tion tasks.

6. Detailed Results for CAT-Seg with ViT-Large
model

To evaluate whether our approach performs efficiently on large
models, we conducted the experiment on a ViT-Large model
using the CAT-Seg. As shown in Tab. 6, we observed con-
sistent performance improvements regardless of the training
method. As detailed in Sec. 5, each version of CAT-Seg is
trained with a different network architecture. In particular, our
model, when combined with CAT-Seg v2, achieved the high-
est performance on most datasets compared to other models.
This demonstrates that our approach is effective regardless
of the model size and can be applied to various CLIP-based
methodologies for dense prediction tasks.

7. Additional Results of Open-Vocabulary Object
Detection

In the main results of open-vocabulary object detection
(OVOD), we employed the EVA-CLIP model for its capa-
bility. We present detailed results using the OpenAl CLIP
model for OVOD in Tab. 7, where our method still achieves
superior performance across all metrics.

8. Qualitative Examples

Fig. 3 shows the results of the zero-shot scenario of open-
vocabulary semantic segmentation (OVSS) performed on the

Pascal VOC [5] dataset using the MaskCLIP [21] framework.
Fig. 4 presents the results of using CAT-Seg v2 [4] on the
Pascal Context [13] dataset. Finally, Fig. 5 displays the
results of OVOD performed on the OV-COCO [11] dataset
using the F-ViT [8] model.



CLIPSelf ATAS (Ours)

Figure 3. Visualization of Mask CLIP Segmentation Results. that compares dense prediction abilities of CLIP, CLIPSelf, and ATAS. The
images are from Pascal VOC dataset.



Image Prediction Image Prediction

Figure 4. Visualization result of CAT-Seg v2 with ATAS Results. The images are from Pascal Context [13] with 459 categories.



Figure 5. Visualization of Object Detection Results. The red boxes indicate predictions for novel classes, while the blue boxes represent
predictions for base classes.
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