
Supplementary Material to “Fine-structure Preserved Real-world Image Super-resolution via
Transfer VAE Training”

The following materials are provided in this supplementary file:
1. More visual comparisons in Real-ISR task and STISR task (referring to Sec. 4.2 in the main paper);
2. Comparisons with GAN-based methods.

1. More Visual Comparisons
We provide more visual comparisons of the SD-based Real-ISR methods in Figs. 1 and 2 to demonstrate that our TVT
method can not only preserve image fine-structures but also exhibit good generative capability. As shown in Fig. 1, TVT
successfully generates clear sunglasses, while other methods struggle to reproduce complete sunglasses. As shown in Fig. 2,
TVT effectively restores the windows in the building, while all the other methods fail. Fig. 3 presents visual comparisons of
STISTR methods. It is evident that TVT restores the texts much more accurately than its competitors.

2. Comparisons with GAN-based Methods
We compare TVT with three representative GAN-based SR methods: RealESRGAN [9], BSRGAN [12] and LDL [6]. The
quantitative results are presented in Table 1. One can see that our proposed TVT method achieves the best performance on
no-reference metrics (CLIPIQA [8], MUSIQ [5], Q-Align [11], TOPIQ [3], HyerIQA [7], and AFINE-NR [4]) on all the
three test datasets (DIV2K-val [1], RealSR [2] and DRealSR [10]). For reference-based metrics, TVT also demonstrates
competitive results (e.g., LPIPS, DISTS and AFINE-FR).

The visual comparisons are illustrated in Fig. 4. It can be clearly found that the proposed TVT method can generate more
realistic details than those GAN-based methods. For example, in the first image, TVT restores clear windows, while the
GAN-Based methods struggle to restore windows with complete structures.

Figure 1. Visual comparison with SD-based Real-ISR methods.



Figure 2. Visual comparison with SD-based Real-ISR methods.

Figure 3. Visual comparison with STISR methods.



Table 1. Quantitative comparison between TVT and the state-of-the-art GAN-based SR methods on synthetic (DIV2K) and real-world
(RealSR, DrealSR) test datasets. The best and second best results are highlighted in red and blue, respectively.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ AFINE-FR↓ DISTS↓ CLIPIQA↑ MUSIQ↑ Q-Align↑ TOPIQ↑ HyperIQA↑ AFINE-NR↓
RealESRGAN 24.29 0.6371 0.3112 -0.5529 0.2141 0.5277 61.05 3.064 0.5297 0.5664 -0.8269

BSRGAN 24.58 0.6269 0.3351 -0.1088 0.2275 0.5247 61.19 2.855 0.5460 0.5729 -0.7550
LDL 23.83 0.6344 0.3256 -0.3922 0.2227 0.5179 60.04 2.986 0.5144 0.5549 -0.8090

DIV2K

TVT 24.23 0.6292 0.2773 -0.9132 0.1860 0.6986 68.67 3.920 0.6791 0.6794 -0.8966
RealESRGAN 25.68 0.7614 0.2710 -0.6811 0.2060 0.4490 60.36 3.107 0.5148 0.5216 -0.9132

BSRGAN 26.37 0.7651 0.2656 -0.7995 0.2124 0.5116 63.28 3.181 0.5626 0.5505 -0.8728
LDL 25.28 0.7565 0.2750 -0.6386 0.2120 0.4558 60.93 3.085 0.5120 0.5288 -0.9269

RealSR

TVT 25.81 0.7596 0.2587 -0.8787 0.2061 0.6882 69.89 3.770 0.6829 0.6761 -1.0237
RealESRGAN 28.61 0.8051 0.2819 -0.7286 0.2089 0.4516 54.27 2.869 0.4624 0.4952 -0.7874

BSRGAN 28.70 0.8028 0.2858 -0.9056 0.2144 0.5093 57.16 2.957 0.5061 0.5315 -0.7628
LDL 28.19 0.8124 0.2792 -0.7307 0.2127 0.4476 53.94 2.850 0.4518 0.4888 -0.7937

DrealSR

TVT 28.27 0.7899 0.2900 -0.8057 0.2205 0.7220 65.56 3.641 0.6591 0.6655 -0.9073

Figure 4. Visual comparison with GAN-based Real-ISR methods.
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