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7. Implementation Details

7.1. Architecture
Our network mainly consists of the CLIP image encoder
(ψ), the framewise trajectory encoder (ϕ), the temporal tra-
jectory encoder (χ), and the FC network (ρ), as shown in
Fig. 3 of the main paper. Regarding the framewise trajectory
encoder ϕ, we employ a three-layered 1D convolution net-
work followed by batch normalization and ReLU activation
layers as with [46]. The transformer encoder [36] is em-
ployed as the temporal trajectory encoder χ. This encoder
has 16 heads and 24 layers. The FC network ρ consists
of two full-connection layers followed by ReLU activation
layers. Layer normalization is also located in front of the
two full-connection layers.

7.2. Hard Negative Training and Easy Negative
Pruning at Inference for Stability and Effi-
ciency

In our joint learning, we have an issue of imbalance between
in-group and non-group pairs because most people observed
in an image are in different groups. That is, most pairs are
labeled to be non-group. Such imbalance induces unstable
and inefficient training.

Distance-based hard negative training To avoid this im-
balance issue, this paper proposes to focus on hard-negative
non-group samples. This hard negative is defined based on
the distance between people. In nature, in-group people are
close to each other. This assumption suggests training only
non-group pairs, in each of which two people are close,
as hard negative samples. In our implementation, for each
person of interest, k-nearest neighbor non-group people are
trained as hard negatives at each frame.

Easy negative pruning Since in-group people are not
largely far apart in nature, bruteforce pairing at infer-
ence is useless and inefficient. Based on this assump-
tion, we propose the following two edge pruning schemes,

distance-based pruning and feature-similarity-based prun-
ing schemes.
Distance-based pruning. For each person, only k-nearest
neighbor people are connected. k = 2 for experiments on
JRDB and PANDA, and k = 3 for those on Café.
Feature-similarity-based pruning. Edges are pruned if
their weights (i.e., Pg in the temporal groupness graph) are
less than a pre-defined threshold, The.

7.3. Training Time
The total training times for JRDB, CafeV, CafeP, and
PANDA are 7h (4h for CLIP finetuning + 3h for joint learn-
ing), 17h (3h for CLIP finetuning + 14h for joint learning),
17h (3h for CLIP finetuning + 14h for joint learning), and
22h (16h for CLIP finetuning + 6h for joint learning), re-
spectively.

8. Experiments on PANDA
As mentioned in the main paper, the PANDA dataset is not
used for exeprimentas shown in the main paper because
PANDA has only static group annotations. Instead, all ex-
periments for static group detection shown in the main pa-
per are conducted on PANDA and shown in Sec. 8.

8.1. Dataset
PANDA dataset [5] consists of 10 high-resolution quasi
bird’s-eye-view videos of outdoor scenes, including many
people. The image resolution ranges between around 15k
× 25k and 25k × 35k pixels. Each observed person in each
frame is annotated with various labels such as a bounding
box, a location, and occluded or not. Following [3, 5], nine
and one videos are used for training and test, respectively,
and 2fps videos are sampled from the original videos. As a
result, 1,799 and 234 frames are sampled and used for train-
ing and test, respectively. Each sampled video observes 145
and 75 groups on average.

8.2. Details
The details different from those shown in Sec. 4.2 in the
main paper are as follows.

1



Table 8. Quantitative results of static group detection on PANDA.
The best score in each metric on each dataset is colored red (also
in all the following Tables).

Method Precision Recall F1
G2L [5] 0.293 0.160 0.207
Dis.Mat+ [7] 0.429 0.120 0.188
GNN w/ GRU [3] 0.419 0.173 0.245
ARG [6] 0.349 0.200 0.254
S3R2 [3] 0.559 0.507 0.532
GroupTrans [8] 0.750 0.545 0.632
Ours 0.813 0.693 0.748

Table 9. Different visual prompts for CLIP on PANDA.

Dataset
(Task) Model I-Enc Group detection

F1 Precision Recall F1

PANDA
(static)

No prompt 0.599 0.683 0.573 0.623
Mask 0.642 0.710 0.587 0.642
A circle 0.643 0.696 0.640 0.667
Two circles 0.662 0.813 0.693 0.748

Table 10. Different CLIP finetuning labels, w/ and w/o occlusion
on PANDA.

Dataset
(Task) Model Precision Recall F1

PANDA
(static)

Ours w/o Occ 0.697 0.707 0.702
Ours 0.813 0.693 0.748

Table 11. GA-CLIP image features vs visual features on PANDA.

I-Enc Group detectionDataset
(Task) Model F1 Precision Recall F1

ResNet50 0.589 0.467 0.653 0.544
ViT-L/16 0.552 0.630 0.680 0.654
DINOv2 0.630 0.607 0.720 0.659

PANDA
(static)

Ours 0.662 0.813 0.693 0.748

Table 12. Feature ablation study on PANDA.

Dataset (Task) Model Precision Recall F1

PANDA
(static)

Ours w/o App. 0.809 0.507 0.623
Ours w/o Traj. 0.610 0.667 0.637
Ours 0.813 0.693 0.748

Architecture: Louvain needs 505 MiB on PANDA.

Hyper Parameters: While Dx = 8 on JRDB and Café as
mentioned in the main paper, Dx = 10 on PANDA because
the face direction is added as an additional visual attribute.
The number of frames used for trajectory features is T = 51
on PANDA. The effect of T on group detection is validated
in Sec. 10.6.

8.3. Comparison with SoTA methods
The results of static group detection on PANDA are shown
in Table 8. The results of all previous methods come
from [3, 8]. Our method outperforms the previous methods
in all metrics. For example, our method improves F1 by
0.116 on PANDA, compared with GroupTransformer [8],
the best previous method.

8.4. Detailed Analyses
8.4.1. Different Visual Prompts for CLIP
Table 9 shows the contributions of visual prompts. In ad-
dition to group detection, the results of three-class classifi-
cation (i.e., “individual people,” “a group of people,” and
“occlusion”) using the image encoder are also shown in the
“I-Enc” row of Table 9. We can see that our proposed visual
prompt using (d) two circles is the best in all metrics.

8.4.2. Occlusion Handling with CLIP Finetuning
The three classes (i.e., “individual people,” “a group of peo-
ple,” and “occlusion”) are used in our proposed finetuning
of the CLIP image encoder. The effectiveness of the “occlu-
sion” class is verified by ablating it in our CLIP finetuning
scheme.

The results are shown in Table 10. We can see that “oc-
clusion” improves precision and F1 significantly (i.e., 0.116
and 0.046 improvements in precision and F1, respectively),
while recall is slightly degraded (i.e., 0.014).

8.4.3. GA-CLIP image features vs Visual Features
Large-scale pretrained vision-based encoders, ResNet [2],
ViT [1], and DINOv2 [4], replace the CLIP image encoder
to verify the effectiveness of VLM for group detection. In
addition to group detection, three-class classification with
the image encoder is also evaluated.

Table 11 shows that in terms of precision and F1, our
method using GA-CLIP outperforms all the others by a
large margin. The gaps from the second-best scores are
0.183 = 0.813 − 0.630 and 0.089 = 0.748 − 0.659 in
precision and F1, respectively. While our method is the
second-best in recall, the gap from the best is not large (i.e,
0.027 = 0.720− 0.693). This proves that higher-level spa-
tial contexts useful for group detection are represented in
GA-CLIP compared with image encoders trained only with
images.

8.4.4. Ablation of Trajectory and Image Features
The contributions of trajectory and image features are vali-
dated by ablating either of them, as shown in Table 12. In
this feature ablation, we can see that our method with both
features is better than that uses one of them in all metrics.

In precision on PANDA, ours w/o Traj. is worse than
ours w/o App. This may be because the relative locations
of a pair are well-observed in bird’s-eye-view images of
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Figure 11. Visual results of dynamic group detection on PANDA.
People enclosed by the same color are in the same group.
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Figure 12. Failure cases of our method on PANDA. Detected in-
group members are marked by rectangles with the same color.

PANDA but their walking directions are not easy to under-
stand. This results in overdetections by ours w/o Traj. In
F1, however, our method outperforms both ours w/o App.
and Traj.

8.4.5. Inference Time
On a NVIDIA RTX 6000 Ada, the Louvain algorithm needs
0.048 seconds/frame for the temporal groupness graph on
PANDA. The cost on PANDA is larger than those of JRDB
and Café, which are shown in the main paper, because
more people are observed in each frame on PANDA. The
total inference time is 0.60 secs/frame on PANDA. Since
each video consists of 234 frames on PANDA, the inference
times for each video are 139 secs.

8.5. Success and Failure Cases
Success cases on PANDA are shown in Fig. 11. In the upper
example, two people enclosed by the red boxes are correctly
detected as in-group people at t1 and t2. Furthermore, after
they split at t3, our method can find that they are not in the
same group. The lower example is a more difficult case.
Our method can correctly track the dynamic group change
so that two people merge and split at t2 and t3, respectively.

Figure 12 shows two failure cases of our method on
PANDA. In the upper case, a sales staff interacts with a cus-
tomer. During this interaction, the trajectory features are not
reliable because they do not walk. In addition, since their
interaction is short in time and not visually clear. In the
lower case, since two individuals walk side by side, they
are detected as in-group members. Furthermore, even after

their path splits at the intersection at t3, they are still erro-
neously detected as a group. This error may be caused due
to trajectory features computed from a long-term observa-
tion (i.e., T = 51 in PANDA), while this long-term obser-
vation increases the robustness to instantaneous framewise
observation error.

9. Experiments on CaféV and CaféP
While the Café dataset consists of CaféV and CaféP, their
mean results are shown in the main paper due to the page
limitation. Section 9 shows the separate results of CaféV
and CaféP.

9.1. Dataset
The detail of the Café dataset is described in the main paper.
All clips in this dataset are split into training, validation, and
test splits in two different ways, split-by-view and split-by-
place, which are called CaféV and CaféP, respectively. In
CaféV and CaféP, the test split has only unseen viewpoints
and places, respectively.

9.2. Comparison with SoTA methods
The results of static and dynamic group detections on CaféV
and CaféP are shown in Table 13 and Table 14. Our method
outperforms all others in terms of all metrics by a large gap.

9.3. Detailed Analyses
Experimental results shown in Tables 15, 16, and 17 corre-
spond to Tables 5, 7, and 8 in the main paper, respectively.
Overall, Tables 15, 16, and 17 show the superiority of our
proposed component on CaféV and CaféP as with on Café
whose results are shown in the main paper.

10. Additional Experiments
Several additional experiments, not included in the main pa-
per for the page limitation, are presented in this section.

10.1. Zero-shot Binary Classification using CLIP
While only several typical results of our preliminary exper-
iments are shown in Fig. 4 of the main paper, more detailed
quantitative results are shown in Table 18. Remember that,
in our preliminary experiments, binary classification accu-
racy (i.e., “individual people” or “a group of people”) is ver-
ified using a softmax layer connected to the pretrained CLIP
image and text encoders, which are not finetuned with the
“occlusion” class1. In addition to a raw bounding box (i.e.,
(a) in Fig. 8 of the main paper), three visual prompts (b),
(c), and (d) of Fig. 8 of the main paper are verified quanti-
tatively in Table 18. Two red circles for specifying a pair
of people of interest are (d), which is proposed in our work.

1The results of three-class classification (i.e., “individual people,” “a
group of people,” or “occlusion”) are shown in Table 4 of the main paper.



Table 13. Quantitative results of static group detection on CaféV
and CaféP.

Method Precision Recall F1
CaféV

S3R2 [3] 0.598 0.704 0.647
GroupTrans [8] 0.278 0.420 0.335
Ours 0.771 0.887 0.825

CaféP
S3R2 [3] 0.591 0.714 0.647
GroupTrans [8] 0.296 0.430 0.351
Ours 0.739 0.900 0.812

Table 14. Quantitative results of dynamic group detection on
CaféV and CaféP.

Method Cluster Precision Recall F1
CaféV

S3R2[3]
LP 0.614 0.524 0.565

CNM 0.603 0.681 0.639
Louvain 0.615 0.630 0.622

Group
Trans[8]

LP 0.234 0.212 0.222
CNM 0.093 0.067 0.078

Louvain 0.293 0.331 0.311

Ours
LP 0.782 0.776 0.779

CNM 0.685 0.905 0.780
Louvain 0.721 0.907 0.803

CaféP

S3R2[3]
LP 0.534 0.533 0.533

CNM 0.545 0.723 0.621
Louvain 0.521 0.637 0.574

Group
Trans[8]

LP 0.182 0.177 0.179
CNM 0.080 0.071 0.075

Louvain 0.227 0.275 0.249

Ours
LP 0.689 0.759 0.722

CNM 0.603 0.939 0.735
Louvain 0.634 0.900 0.744

As alternatives, the pair is enclosed by one circle in (c), and
other people are masked in (b).

As shown in Table 18, binary classification accuracy is
better on JRDB than Café and PANDA because a person’s
appearance is better observed in first-person-view images of
JRDB than in bird’s-eye-view images of Café and PANDA.
The best accuracy is obtained in (b) mask on JRDB. This is
because, in (b) where other people except for a target pair
are masked, it is easy for CLIP to focus on the target pair to
evaluate whether or not this pair is in the same group.

However, (1) such unnatural masked images may cause a
domain gap between these masked images and their original
raw images used in CLIP pretraining. In addition, (2) other
people around the target pair are also informative in deeply
evaluating the groupness of this pair. Due to these two rea-
sons, even on JRDB, the accuracy is just a little higher than

Table 15. Different visual prompts for CLIP on CaféV and CaféP.

Dataset
(Task) Model I-Enc Group detection

F1 Precision Recall F1

CaféV
(static)

No prompt 0.630 0.629 0.827 0.715
Mask 0.839 0.736 0.852 0.790
A circle 0.798 0.701 0.822 0.757
Two circles 0.905 0.771 0.887 0.825

CaféV
(dynamic)

No prompt 0.630 0.550 0.830 0.662
Mask 0.839 0.706 0.850 0.772
A circle 0.798 0.673 0.816 0.738
Two circles 0.905 0.721 0.907 0.803

CaféP
(static)

No prompt 0.521 0.545 0.711 0.617
Mask 0.806 0.731 0.893 0.804
A circle 0.718 0.603 0.778 0.680
Two circles 0.861 0.739 0.900 0.812

CaféP
(dynamic)

No prompt 0.521 0.459 0.715 0.559
Mask 0.806 0.643 0.893 0.748
A circle 0.718 0.541 0.775 0.637
Two circles 0.861 0.634 0.900 0.744

Table 16. GA-CLIP image features vs visual features on CaféV
and CaféP.

I-Enc Group detectionDataset
(Task) Model F1 Precision Recall F1

CaféV
(static)

ResNet50 0.657 0.591 0.781 0.673
ViT-L/16 0.544 0.611 0.760 0.677
DINOv2 0.740 0.604 0.765 0.675
Ours 0.905 0.771 0.887 0.825

CaféV
(dynamic)

ResNet50 0.657 0.551 0.774 0.644
ViT-L/16 0.544 0.558 0.760 0.643
DINOv2 0.740 0.582 0.774 0.664
Ours 0.905 0.721 0.907 0.803

CaféP
(static)

ResNet50 0.669 0.608 0.868 0.715
ViT-L/16 0.546 0.451 0.372 0.408
DINOv2 0.731 0.574 0.751 0.651
Ours 0.861 0.739 0.900 0.812

CaféP
(dynamic)

ResNet50 0.669 0.494 0.845 0.623
ViT-L/16 0.546 0.452 0.365 0.404
DINOv2 0.731 0.523 0.752 0.617
Ours 0.861 0.634 0.900 0.744

Table 17. Feature ablation study on CaféV and CaféP.

Dataset (Task) Model Precision Recall F1

CaféV
(static)

Ours w/o App. 0.657 0.807 0.724
Ours w/o Traj. 0.646 0.838 0.729
Ours 0.771 0.887 0.825

CaféV
(dynamic)

Ours w/o App. 0.595 0.831 0.694
Ours w/o Traj. 0.637 0.839 0.724
Ours 0.721 0.907 0.803

CaféP
(static)

Ours w/o App. 0.620 0.873 0.725
Ours w/o Traj. 0.691 0.873 0.771
Ours 0.739 0.900 0.812

CaféP
(dynamic)

Ours w/o App. 0.508 0.868 0.641
Ours w/o Traj. 0.583 0.864 0.696
Ours 0.634 0.900 0.744



Table 18. Visual prompts for zero-shot binary classification using
CLIP.

Dataset Visual prompt Accuracy

JRDB

(a) No prompt 0.518
(b) Mask 0.561
(c) A circle 0.535
(d) Two circles 0.516

Café

(a) No prompt 0.501
(b) Mask 0.513
(c) A circle 0.516
(d) Two circles 0.509

CaféV

(a) No prompt 0.502
(b) Mask 0.520
(c) A circle 0.527
(d) Two circles 0.514

CaféP

(a) No prompt 0.500
(b) Mask 0.505
(c) A circle 0.502
(d) Two circles 0.502

PANDA

(a) No prompt 0.480
(b) Mask 0.478
(c) A circle 0.509
(d) Two circles 0.479

Table 19. CLIP trained with multi-label learning.

Dataset
(Task) Model Precision Recall F1

JRDB
(static)

Ours w/ Multi 0.735 0.805 0.768
Ours 0.742 0.844 0.790

JRDB
(dynamic)

Ours w/ Multi 0.682 0.744 0.712
Ours 0.724 0.820 0.769

PANDA
(static)

Ours w/ Multi 0.667 0.640 0.653
Ours 0.813 0.693 0.748

50% (i.e., chance level).

Why are (d) two circles worse than (b) mask in the pre-
liminary experiments? Furthermore, (c) circling is also bet-
ter than (d) two circles in the preliminary experiments. Our
interpretation of these results is that circling for specifying
people is potentially useful even in the pretrained CLIP, as
validated by the accuracy of (c) circling. This may be be-
cause this circling is also trained in the pretrained CLIP.
However, we need the CLIP finetuning for more explicit
training to specify a pair without interference from the back-
ground and other objects. As a result of this CLIP finetun-
ing, our proposed method (i.e., (d) two circles) is better than
the other three visual prompts, (a), (b), and (c), as shown in
Table 4 of the main paper.

10.2. CLIP trained with Multi-label Learning
While the probabilities of the three classes (“individual
people,” “a group of people,” and “occlusion”) are esti-
mated so that the sum of these three probabilities is one
in our proposed CLIP finetuning, these three classes are not
necessarily exclusive. That is, while “individual people”
and “a group of people” are exclusive, either of these two
classes can be observed with “occlusion.” This fact moti-
vates us to verify the effectiveness of multi-label learning
for CLIP finetuning. For this verification, the group label,
Cg ∈ {individual people, a group of people}, and the vis-
ibility label, Cv ∈ {occlusion, visible}, are independently
classified with each softmax layer in the finetuning process.
Note that Café is not used for this experiment because “oc-
clusion” is not annotated on Café.

Table 19 shows that the aforementioned multi-label clas-
sification is not beneficial. This observation can be inter-
preted as follows. If two people in a pair are both visi-
ble, the group label classification is not difficult, resulting
in successful multi-label classification. However, if at least
one of two people in the pair is occluded, it is difficult to
classify the group label correctly. In such a case, the un-
reliable results of the group label classification disturb the
finetuning process. In our proposed three-class classifica-
tion, on the other hand, if at least one of two people in the
pair is occluded, the probability of the occlusion class gets
higher, and those of the other two classes (i.e., “individual
people” and “a group of people”) are lower. That is, our pro-
posed three-class classification does not have to classify the
group label correctly. For the above reasons, our proposed
three-class classification works better than the multi-label
classification task.

10.3. Model Capacity of CLIP
Table 20 shows the group detection results obtained with
CLIPs of different model capacities. The model capacity
of ViT-L is larger than that of ViT-B. The cropped bound-
ing box is resized to 224 × 224 pixels in all models except
for ViT-L/14@336px, where it is resized to 336× 336 pix-
els. A value following the slash denotes the size of each
patch fed into ViT: e.g., a patch with 32× 32 pixels is used
in ViT-B/32. The performance increases as the model ca-
pacity grows and is not saturated yet, even with the largest
model. Thus, we expect further improvement with larger
image encoders.

10.4. Joint Learning Strategies
Table 21 shows the group detection results of different
learning strategies of CLIP during joint learning: (1) jointly
trained, (2) jointly trained using a smaller learning rate (i.e.,
2e-7) compared with the one for other networks (i.e., as
described in Sec. 4.3.1 of the main paper), and (3) fixed
(i.e., our strategy). The strategy (2) is verified because the



Table 20. CLIPs with different model capacities.

Dataset
(Task) CLIP I-Enc Group detection

F1 Precision Recall F1

JRDB
(static)

ViT-B/32 0.573 0.679 0.757 0.716
ViT-B/16 0.599 0.739 0.760 0.749
ViT-L/14 0.631 0.725 0.757 0.740
ViT-L/14@336px 0.666 0.742 0.844 0.790

JRDB
(dynamic)

ViT-B/32 0.573 0.597 0.651 0.623
ViT-B/16 0.599 0.680 0.658 0.669
ViT-L/14 0.631 0.700 0.720 0.710
ViT-L/14@336px 0.666 0.724 0.820 0.769

Café
(static)

ViT-B/32 0.712 0.581 0.740 0.649
ViT-B/16 0.767 0.631 0.837 0.719
ViT-L/14 0.791 0.668 0.854 0.750
ViT-L/14@336px 0.885 0.756 0.893 0.819

Café
(dynamic)

ViT-B/32 0.712 0.543 0.734 0.620
ViT-B/16 0.767 0.576 0.830 0.680
ViT-L/14 0.791 0.608 0.839 0.703
ViT-L/14@336px 0.885 0.681 0.904 0.776

CaféV
(static)

ViT-B/32 0.710 0.598 0.695 0.643
ViT-B/16 0.772 0.645 0.864 0.738
ViT-L/14 0.786 0.678 0.826 0.745
ViT-L/14@336px 0.905 0.771 0.887 0.825

CaféV
(dynamic)

ViT-B/32 0.710 0.587 0.683 0.631
ViT-B/16 0.772 0.613 0.855 0.714
ViT-L/14 0.786 0.654 0.806 0.722
ViT-L/14@336px 0.905 0.721 0.907 0.803

CaféP
(static)

ViT-B/32 0.715 0.560 0.794 0.657
ViT-B/16 0.761 0.615 0.805 0.697
ViT-L/14 0.797 0.657 0.887 0.755
ViT-L/14@336px 0.861 0.739 0.900 0.812

CaféP
(dynamic)

ViT-B/32 0.715 0.490 0.794 0.606
ViT-B/16 0.761 0.531 0.801 0.639
ViT-L/14 0.797 0.554 0.879 0.680
ViT-L/14@336px 0.861 0.634 0.900 0.744

PANDA
(static)

ViT-B/32 0.618 0.686 0.640 0.662
ViT-B/16 0.640 0.685 0.665 0.676
ViT-L/14 0.649 0.758 0.667 0.709
ViT-L/14@336px 0.662 0.813 0.693 0.748

CLIP image encoder is already finetuned before joint learn-
ing, while the other networks (i.e., ϕ, χ, and ρ) are trained
from scratch.

Table 21 shows that our method in which CLIP is fixed
during joint learning is the best regardless of the learning
rate for CLIP. This may be because the joint learning causes
CLIP to overfit to the training data of the group detection
dataset, which is much smaller than the huge amount of
training data used for CLIP pretraining.

10.5. Hard Negative Training and Easy Negative
Pruning at Inference for Stability and Effi-
ciency

Feature-similarity-based easy negative pruning at infer-
ence:

Figure 13 shows the effect of our easy negative pruning
in training by varying the threshold of pairwise groupness
probabilities, The. The ranges from 0 to 0.95 at an interval
of 0.05. With The = 0, all edges remain, and the F1 score

Table 21. Different joint learning strategies. In “JL,” CLIP is
jointly trained.

Dataset
(Task) Model I-Enc Group detection

F1 Precision Recall F1

JRDB
(static)

JL 0.121 0.654 0.785 0.713
JL w/ small lr 0.643 0.660 0.824 0.733
Ours 0.666 0.742 0.844 0.790

JRDB
(dynamic)

JL 0.121 0.595 0.684 0.636
JL w/ small lr 0.643 0.589 0.771 0.668
Ours 0.666 0.724 0.820 0.769

Café
(static)

JL 0.265 0.639 0.841 0.728
JL w/ small lr 0.646 0.647 0.855 0.737
Ours 0.885 0.756 0.893 0.819

Café
(dynamic)

JL 0.265 0.557 0.856 0.674
JL w/ small lr 0.646 0.554 0.846 0.680
Ours 0.885 0.681 0.904 0.776

CaféV
(static)

JL 0.224 0.660 0.836 0.742
JL w/ small lr 0.513 0.611 0.838 0.707
Ours 0.905 0.771 0.887 0.825

CaféV
(dynamic)

JL 0.224 0.608 0.861 0.713
JL w/ small lr 0.513 0.551 0.825 0.661
Ours 0.905 0.721 0.907 0.803

CaféP
(static)

JL 0.313 0.615 0.846 0.712
JL w/ small lr 0.805 0.690 0.876 0.772
Ours 0.861 0.739 0.900 0.812

CaféP
(dynamic)

JL 0.313 0.497 0.849 0.627
JL w/ small lr 0.805 0.558 0.872 0.702
Ours 0.861 0.634 0.900 0.744

PANDA
(static)

JL 0.175 0.797 0.627 0.702
JL w/ small lr 0.175 0.687 0.613 0.648
Ours 0.662 0.813 0.693 0.748
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Figure 13. Results of group detection with a varying threshold,
The, for temporal groupness graph construction. The bars indicate
the pruning rates of the pairs of people depending on The. Solid
and dotted lines indicate the F1 scores of the results of dynamic
and static detections, respectively.

is low. F1 increases as The gets greater. In all the datasets,
after F1 reaches the max, it drops. The with the max F1 is
different among JRDB, PANDA, and Café. While the max
F1 scores are observed around at The = 0.9 on JRDB and
PANDA, F1 reaches around at The = 0.6 on Café. This dif-
ference is caused probably due to difficulty in image-based



group probability estimation on Café in which people do not
walk and close to each other in most frames. This difficulty
results in many lower probability scores, which require our
method to evaluate many lower probability scores. As a re-
sult, the threshold of pairwise groupness probabilities, The,
gets lower.
Distance-based hard negative training and Distance-
based easy negative pruning at inference: By varying k
of k-nearest neighbor sampling, the effects of the hard nega-
tive training process and the easy negative test-time pruning
process are verified, as shown in Fig. 14

Figure 14 shows that hard negative training using k = 1
works better than k = 2, 3, 4 in many cases. For test-time
pruning, when we focus on hard negative training using
k = 1, k = 2 is the best at inference on JRDB (static),
JRDB (dynamic), and PANDA (static). These results can
be naturally interpreted as follows. As mentioned at the be-
ginning of Sec. 10.5, the number of negative pairs (i.e., peo-
ple in different groups) is significantly greater than that of
positive pairs (i.e., in-group members). In addition, most
people are alone, and groups consisting of two in-group
members are greater in number than other groups. Due to
this imbalance and this group statistics, 1-nearest neighbor
is sufficient at training. At test time, on the other hand,
the 1-nearest neighbor person may or may not be an in-
group member. However, k = 1 at inference leads to a
significantly sparsely-connected graph, resulting in unsta-
ble group detection. This may be why k = 2 works bet-
ter than k = 1 at inference. Note that graph clustering
using the temporal groupness graph allows us to connect
(k + 1)-nearest neighbor people via temporal edges con-
necting each person’s nodes in subsequent frames. That is,
three or more people can be detected as in-group members
even with k = 2 (as shown in Fig. 15, for example).

On Café also, hard negative training works better with
k = 1 in many cases. This is because the number of nega-
tive pairs is much greater than that of positive pairs in Caf’e
as well as in JRDB and PANDA. On the other hand, k = 3
works better at inference in Café, while k = 2 is the best
in JRDB and PANDA. This may be because, in Café, many
groups consist of more people (e.g., four or more people)
than in-group people in JRDB and PANDA. That is, k at
inference should be greater to detect more in-group people
in each gruop in Café.

10.6. Analysis of Input Frame Changes
Table 22 shows the results in which the number of input
frames for computing the trajectory features is changed.

We can see that the best result is obtained with T = 51
(i.e., F1 = 0.748) on PANDA. The F1 score is largely im-
proved from T = 11 (i.e., F1 = 0.671) to T = 51. These re-
sults reveal that long-term trajectory features allow us to im-
prove the performance of group detection, e.g., group detec-

Table 22. Analysis of Input Frame Changes.

Dataset (Task) Input frame Precision Recall F1

JRDB
(static)

T=11 0.677 0.715 0.696
T=31 0.686 0.805 0.740
T=51 0.707 0.721 0.714
T=71 0.711 0.832 0.767
T=91 0.719 0.729 0.724

T=All (Ours) 0.742 0.844 0.790

JRDB
(dynamic)

T=11 0.644 0.750 0.693
T=31 0.619 0.757 0.681
T=51 0.700 0.704 0.702
T=71 0.649 0.761 0.701
T=91 0.691 0.743 0.716

T=All (Ours) 0.724 0.820 0.769

Café
(static)

T=11 0.669 0.855 0.750
T=31 0.672 0.857 0.753

T=All (Ours) 0.756 0.893 0.819

Café
(dynamic)

T=11 0.618 0.857 0.717
T=31 0.616 0.862 0.719

T=All (Ours) 0.681 0.904 0.776

CaféV
(static)

T=11 0.654 0.835 0.733
T=31 0.649 0.838 0.731

T=All (Ours) 0.771 0.887 0.825

CaféV
(dynamic)

T=11 0.647 0.838 0.730
T=31 0.642 0.848 0.731

T=All (Ours) 0.721 0.907 0.803

CaféP
(static)

T=11 0.687 0.878 0.771
T=31 0.700 0.879 0.780

T=All (Ours) 0.739 0.900 0.812

CaféP
(dynamic)

T=11 0.583 0.879 0.701
T=31 0.586 0.879 0.704

T=All (Ours) 0.634 0.900 0.744

PANDA
(static)

T=11 0.676 0.667 0.671
T=21 0.725 0.667 0.694
T=31 0.700 0.653 0.676
T=41 0.794 0.667 0.725

T=51 (Ours) 0.813 0.693 0.748
T=61 0.721 0.653 0.685

tion robust against framewise estimation error of groupness
probabilities and group detection using long-term relation-
ships between different trajectories. The F1 score decreases
with more frames (i.e., T = 61). This performance drop
(i.e., 0.063 = 0.748 − 0.685) implies that too long-term
temporal information prevents graph clustering from detect-
ing short-term group formations (e.g., two people greet each
other for two seconds).

On the other hand, the number of frames in each video
(denoted by Nf ) is much smaller than in JRDB and Café
than in PANDA. Therefore, all frames in each video are
used to compute trajectory features on JRDB and Café, as
mentioned in the main paper. That is, T = Nf in all exper-
iments except for those shown in Table 22. Nf is between
28 and 115 frames on JRDB and around 60 frames on Café.
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Figure 14. Effects of hard-negative sampling on group detection.

In Table 22, if Nf > T , T frames are used for trajectory
features. If Nf ≤ T , Nf frames are used.

The best F1 score is obtained with T=All on both JRDB
(static) and JRDB (dynamic). The best F1 score is obtained
with a larger T on JRDB than on PANDA. This may be
because even non-group people are close to each other in
first-person view images of JRDB. That is, many frames are
required to observe that such non-group people move away
from in-group people.

As well as JRDB, Café needs all frames, T=All, for
achieving the best F1 score. This may be because birs’-
eye-view images of Café are not captured directly above
the scene but diagonally above the scene. That is, many
people are mutually occluded and close to each other in im-
ages. Therefore, many frames are required to observe that
non-group people move away from in-group people in Café.
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