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1. Broader Impacts and Ethic Statements
Alongside recent advances in linguistic generative applica-
tions [4, 8, 9, 17], Visual generative applications [2, 5, 7,
18, 20] presents large scope of ethical dilemmas. This in-
cludes unauthorized counterfeit, potential privacy and fair-
ness issues. Due to our reliance of the visual generative
models [10, 12, 21], our work is also susceptible to these
issues. Addressing these challenges is crucial and neces-
sitates the implementation of robust regulations alongside
advanced technical safeguards. The responsibility falls on
researchers, including ourselves, to proactively design and
implement these safeguards. To foster transparency and
advocate for ethical use, we will release our source code
alongside comprehensive model and data specifications un-
der a license promoting lawful and responsible practices.
Additionally, we are studying advanced techniques like
learning-based digital forensics [11, 22], digital watermark-
ing [23], debiasing approach [14], regularization [13, 15],
causality [16]. These are integral to our strategy for ethi-
cally addressing the challenges of visual generative models.

2. Limitation and Future work
We present the technical limitations of our proposed OSF
and further address the challenges in drawing-based char-
acter 3D animation task. First, the proposed OSF enhances
the edges used as pior input for stylization, but it is limited
by the inability of edges to fully capture the intricate details
of drawing properties. To be specific, human-hand draw-
ings often include a large range of thicknesses in their lines;
however, the provided edge priors fail to distinguish these
nuances, and our method also does not address this limita-
tion either. Edges serve as an effective prior for generating
contours and textures in drawing stylization. However, de-
veloping edge priors with enhanced sensitivity to line thick-
ness could further elevate these effects. This also represents
a promising direction for our future work.

Another persistent challenge lies in the task of this draw-
ing animation’s inputs. The model is tasked with generat-
ing 3D objects in various poses based on a single character

(a) Front view (b) Side view (c) Back view (d) Top view

Figure 1. 3D reconstructions from drawing image using image-to-
3D diffusion (Wonder3D) and reconstruction model (Nerf). The
reconstruction qualities are irregular according to different views
due to the insufficient visual information about target drawing
(only a single drawing image is given).

drawing. While it excels at preserving the visual informa-
tion presented in the original drawing (e.g. the front view), it
struggles significantly with generating unseen perspectives,
such as the side and back views in Figure 1, due to a lack
of training data, resulting in noticeably lower quality out-
puts than ones from front view. Although using multiple
images could resolve this issue, it is not always feasible.
Consequently, achieving consistent 3D synthesis remains a
fundamental challenge (if it were perfect, stylization would
be unnecessary). Thus our future work aims to restore
sharpness in unseen views using a diffusion-based high-
frequency recovery methods [19], while enhancing flexibil-
ity through automatic 3D pose estimation [1] instead of re-
lying on predefined poses. From an efficiency perspective,
current diffusion-based image-to-3D methods incur signif-
icant overhead, which motivates our interest in more effi-
cient diffusion methods [3, 6].

3. Further qualitative results
Explanation.
Figure 2 shows input edges used in OSF corresponding to
the samples in Figure 8.
Figure 3 is results on same motion with various drawings.
Figure 4 is results on drawing with various motions.
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Figure 2. Qualitative results about edges used in OSF of Figure 8 in the main paper.
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Figure 3. Qualitative results about drawing animation on various character drawings with the same motion. DG: DreamGaussian, DSU:
DrawingSpinUp. OSF uses stylization baseline of USNet.



D
G

O
SF

 (O
ur

s)

Drawing

Target
motion

W
on

de
r3

D
O

SF
 (O

ur
s)

Drawing

Target
motion

U
SN

et
 (O

ur
s)

O
SF

 (O
ur

s)

Drawing

Target
motion

Figure 4. Qualitative results about drawing animation on various motions with the same character drawing. DG: DreamGaussian, DSU:
DrawingSpinUp. OSF uses stylization baseline of USNet.
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