S“M: Boosting Semi-Supervised Instance Segmentation with SAM

Supplementary Material

A. More Qualitative Results

Extended qualitative results. We present extended qual-
itative results of S*M on Cityscapes [11] in A.1 and for
COCO [35] in A.2. The results demonstrate that our ap-
proach consistently achieved improvements over the super-
vised teacher network across all experimental settings.

Qualitative comparison of the improved teacher with
structural distillation. In addition to the quantitative re-
sults presented in Tab. 1 of the main paper, we provide
qualitative evidence in A.3 to illustrate the improvements
achieved by the teacher model trained with structural dis-
tillation (SD). A.3 demonstrates that the supervised model
with the additional SD loss Lgp detects objects more effec-
tively and reduces instances where multiple instance masks
are merged into a single pseudo-label compared to the base-
line model without Lsp.

B. Examples of augmented images with refined
pseudo-labels

In Fig. A .4, we present sample outputs of our proposed Re-
fined Instance Mixing (ARP). Pseudo-label masks are ini-
tially generated from teacher predictions and then refined
using SAM, yielding higher-quality pseudo-labels. Build-
ing upon these enhanced labels, ARP craft synthetic data by
blending instances from paired images, thereby introduc-
ing diverse spatial and contextual variations such as novel
backgrounds and potential occlusions. This augmentation
strategy encourages consistent model performance under
challenging conditions and fosters improved robustness and
generalization to a wide range of transformations.

C. Additional Analysis

Analysis on pseudo-label quality. Analysis of pseudo-
label quality for the original teacher prediction, as pro-
vided in Fig. 1 of the main paper, was conducted on the
Cityscapes validation set. The segmentation quality (SQ)
was quantified using the mean IoU of true positive labels,
where a prediction was considered a positive label if it
shared the same class with the ground truth and had an
IoU exceeding 0.5. Class accuracy (CA) was computed as
the ratio of correctly matched predictions (true positives)
to the total number of predictions, with matched pairs de-
fined as predictions exceeding an IoU threshold of 0.5. No-
tably, we did not utilize the region quality metric commonly
employed in panoptic quality (PQ) for evaluating class ac-
curacy, as its computation considers false negatives, leading

to the inclusion of undetected pseudo-labels and making ac-
curate assessment difficult. Building on this analysis, we
evaluated teacher predictions refined through structural dis-
tillation, confirming its effectiveness in improving pseudo-
label quality metrics and addressing the identified chal-
lenges. Tab A.l indicates that structural distillation effec-
tively enhances both metrics used to evaluate pseudo-label
quality, thereby substantively addressing the challenges we
discussed.

‘ Baseline Baseline+SD
CA 96.9 97.3
SQ 47.7 49.4

Table A.1. Comparison of pseudo-label quality analysis.

Analysis on prompt types for pseudo-label refinement.
In Tab A.2, we present the results of applying different
SAM prompt types (bounding box, mask, and point) to our
method. The results show that multiple point prompts of-
fer the highest performance, aligning with our proposed ap-
proach. While bounding boxes follow closely, they can in-
troduce ambiguity when multiple objects appear within a
single box. Single-point prompts can lead to degraded per-
formance due to SAM’s over-segmentation tendencies. Fur-
thermore, as discussed in prior work [13, 60], relying on
mask prompts may lower mask quality and thus negatively
affect training.

Prompt Type AP
Bounding Box 32.1
Mask 243
Single point 30.4

K-sampled points (Ours) | 32.8

Table A.2. Performance comparison across different prompt
type configurations.
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Figure A.1. Qualitative results on Cityscapes under different labeled data settings. Predictions from supervised training (top) and
our semi-supervised approach (bottom) across different labeled data settings. ”Supervised” refers to the pretrained teacher network, while
“semi-supervised” denotes the student model trained jointly on both labeled and unlabeled data.
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Figure A.2. Qualitative results on COCO under different labeled data settings. Predictions from supervised training (top) and our
semi-supervised approach (bottom) across different labeled data settings.
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Figure A.3. Qualitative comparison between the improved teacher model, enhanced by structural distillation and trained on 20 %
of the labeled data, and the baseline model on Cityscapes.

Figure A.4. Visualization of augmented samples with refined pseudo-labels
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