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Supplementary Material

In the supplementary materials, we introduce more details
of our implementation, more experimental results and more
visual comparisons.

A. Implementation Details

A.1. Noise and Residual Schedules

Following [12], we design the schedule for �(t) as follows:
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where �max denotes the highest noise level and ⇢n controls
the speed of noise growth; a larger ⇢n leads to faster growth
in the earlier stages and slower growth in the later stages, and
vice versa. Similarly, we also design a schedule for ↵(t):
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where ⇢r serves a role identical to that of ⇢n. In practice, we
adopt the linear schedule by setting ⇢n = 1 and ⇢r = 1.

A.2. Step Schedule

We design a step schedule for Consistency Training of our
SR model that adjusts the number of steps with the growth
of training iterations. In contrast to [28, 30], we utilize a lin-
early decreasing curriculum for the total steps T , rather than
an increasing one. Specifically, the curriculum is formulated
as follows:
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where k denotes the training iteration, s0 denotes the initial
steps, s1 denotes the final steps and K denotes the total it-
erations. We empirically discover that the decreasing step
schedule could produce better results and achieve faster con-
vergence with s0 = 4, s1 = 3.

A.3. Training Details of Distribution Trajectory

Matching

To stabilize the training of DTM, we propose to periodically
update f✓0 . Specifically, we update f✓0 with the parameters
of f✓ every 1k iterations during the training stage of DTM.
Algorithm 3 shows the details of the overall training process
of CTMSR and Algorithm 3 shows the implementation of
Distribution Trajectory Matching loss.

Algorithm 2 Overall training procedure of CTMSR.
Require: training CTMSR f✓(·)
Require: Paired training dataset (X,Y )

1: Stage 1: Consistency Training for One-Step SR

2: k  0
3: while not converged do

4: ✓�  stopgrad(✓)
5: sample x0,y0 ⇠ (X,Y )
6: sample t ⇠ U(0, T (k)� 1)
7: compute xt,xt�1 using Eq. 1
8: LCT = d(f✓(xt,y0, t),f✓�(xt�1,y0, t� 1))
9: Take a gradient descent step on r✓LCT

10: k  k + 1
11: end while

12: Stage 2: Distribution Trajectory Matching

13: ✓0  stopgrad(✓)
14: while not converged do

15: if k ⌘ 0 (mod 1000) then

16: f✓0  f✓

17: end if

18: sample x0,y0 ⇠ (X,Y )
19: sample t0 ⇠ U(1, T (k))
20: compute xt0 using Eq. 1
21: x̂0 = f✓(xt0 ,y0, t0)
22: sample t ⇠ U(Tmin, Tmax)
23: compute xt, x̂t using Eq. 1
24: grad = !(t)(f✓0(x̂t,y0, t)� f✓0(xt,y0, t)
25: LDTM = 0.5 ⇤ LPIPS(x̂0, stopgrad(x̂0 � grad))
26: Ltotal = �CTLCT + �DTMLDTM

27: Take a gradient descent step on r✓Ltotal

28: k  k + 1
29: end while

30: return Converged CTMSR f✓(·).

Algorithm 3 Distribution Trajectory Matching Loss.
Require: pre-trained CTMSR f✓0(·), HR image x0, LR

image y0, timestep intervals (Tmin, Tmax), SR output x̂0

1: sample t ⇠ U(Tmin, Tmax)
2: compute xt, x̂t,!(t)
3: grad = !(t)(f✓0(x̂t,y0, t)� f✓0(xt,y0, t))
4: LDTM = 0.5 ⇤ LPIPS(x̂0, stopgrad(x̂0 � grad))
5: return LDTM



A.4. Overall Training Process

The training process of our CTMSR can be broadly divided
into two stages as mentioned in the main paper. In the
first stage, we train our model exclusively with LCT until
convergence. Then we utilize a weighted combination of
LCT and LDTM to further optimize our model. The total loss
is formulated as:

Ltotal = �CTLCT + �DTMLDTM, (25)

where we assign �CT = 1 and �DTM = 1.6. The overall
training process is summarized in Algorithm 2.

B. More Experimental Results

B.1. Ablation Study

To comprehensively demonstrate the effectiveness of the pro-
posed DTM, we present additional experimental results of
the ablation study on ImageNet-Test, RealSet65 and RealSR
datasets. The results demonstrate the effectiveness of DTM
across synthetic and real-world datasets. The detailed results
are shown in Table 5, 6, 7.

B.2. Compared with SinSR

The test results on RealSet65 and RealSR (shown in Table 2)
demonstrate that our method outperforms SinSR [36] across
all metrics except for CLIPIQA. Upon detailed observation,
we discover that the CLIPIQA tends to favor images with
noise or artifacts and sometimes fails to distinguish between
fine image details and noise or artifacts. Therefore, CLIPIQA
occasionally produces higher scores for images of lower
quality due to the presence of noise or artifacts. The visual
examples are shown in Figure 6.

B.3. Compared with Stable Diffusion-Based Meth-

ods

Though Stable Diffusion-based methods achieve impressive
results, they rely on the powerful generative capabilities of
Stable Diffusion (SD). This results in these methods being
constrained by fixed backbones (Stable Diffusion), which
limits their scalability to smaller models and consequently
restricts their applicability in practical scenarios. In addi-
tion, these methods require extremely large models and incur
significant inference costs, placing them in a different track
from our approach. To compare with SD-based methods, we
apply our approach to the latent space provided by VQ-VAE
to further enhance the performance of our model. As shown
in Table 8, our refined method attains performance on par
with SD-based methods with much fewer model parameters
and inference time. To be more specific, (1) OSEDiff de-
mands 1.7 times the inference time and 8 times the number
of model parameters; (2) AddSR demands 3.7 times the in-
ference time and 10 times the number of model parameters.

Methods PSNR" LPIPS# CLIPIQA" MUSIQ"
CTMSR (w/o DTM) 24.71 0.2004 0.6092 56.650
CTMSR (w/ SDS) 23.17 0.2545 0.6292 58.188
CTMSR (w/ DTM) 24.73 0.1969 0.6913 60.142

Table 5. Experimental results of ablation study on ImageNet-Test.

Methods CLIPIQA" MUSIQ" MANIQA" NIQE#
CTMSR (w/o DTM) 0.6009 64.274 0.3658 4.37

CTMSR (w/ SDS) 0.6446 62.217 0.3606 4.77
CTMSR (w/ DTM) 0.6893 67.173 0.4360 4.51

Table 6. Experimental results of ablation study on RealSet65.

Methods CLIPIQA" MUSIQ" MANIQA" NIQE#
CTMSR (w/o DTM) 0.5542 62.351 0.3512 4.33

CTMSR (w/ SDS) 0.6101 60.919 0.3479 5.11
CTMSR (w/ DTM) 0.6449 64.796 0.4157 4.65

Table 7. Experimental results of ablation study on RealSR.

Methods Runtime (s) Params (M) CLIPIQA" MUSIQ" MANIQA"
OSEDiff 0.3100 1775 0.6693 69.10 0.4717
AddSR 0.6857 2280 0.5410 63.01 0.4113
CTMSR 0.1847 225 0.7420 64.81 0.4810

Table 8. Quantitative comparisons with SD-based methods on
RealSR. The runtime is tested on 128⇥ 128 input images.
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Figure 6. An illustration of CLIPIQA’s tendency to favor im-
ages with noise or artifacts and its inability to effectively distin-
guish between fine image details and noise or artifacts. Here
are two visual examples of CTMSR and SinSR.

B.3. Visual Comparison

We provide more visual examples of CTMSR compared with
recent state-of-the-art methods on ImageNet-Test and real-
world datasets. The visual examples are shown in Figure 7,
8, 9, 10 11, 12, 13.
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Figure 7. Visual comparison of different methods on ImageNet-Test. Please zoom in for more details.
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Figure 8. Visual comparison of different methods on ImageNet-Test. Please zoom in for more details.
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Figure 9. Visual comparison of different methods on ImageNet-Test. Please zoom in for more details.
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Figure 10. Visual comparison of different methods on ImageNet-Test. Please zoom in for more details.
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Figure 11. Visual comparison of different methods on real-world datasets. Please zoom in for more details.
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Figure 12. Visual comparison of different methods on real-world datasets. Please zoom in for more details.
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Figure 13. Visual comparison of different methods on real-world datasets. Please zoom in for more details.
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