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6. Dataset Settings

ACDC. The ACDC dataset contains 80% pathological
cardiac cases, including pathologies with myocardial in-
farction, cardiomyopathy. All MRI volumes are resampled
with a voxel space of 1.5 x 1.5 x 3.12mm>. Besides, all
cardiac scans have been cropped with a centered patch.
The patch size is set as 128 x 128 x 32. The frame
number N shows a range of [6,16]. Min-max scaling at
[0, 1] is applied to ensure consistent scaling across all scans.

4D Lung. In the case of the 4D-lung dataset, the mod-
els are trained to predict the four intermediate frames
(10%, 20%, 30%, 40%) between the end-inspiratory (0%)
and end-expiratory (50%) phases. Only CT images cap-
tured using kilovoltage energy are included in the study due
to their superior image quality. The data preprocessing strat-
egy is the same as that in [30].

7. Implementation Details

Network Details. For the first stage, the VAE is not to
regulate the whole pipeline, but to utilize a MedNeXt
[42] structure for encoding temporal features and learning
Fourier bases. The VAE maps the image space into the
downsampled latent space with a ratio of 1/8. Specifically,
the core component for MedNeXt is the MedNeXtBlock.
For more details of the VAE, please refer to the source
codes released here. For the latent diffusion UNet, we select
a more lightweight MedNeXt as the baseline, with the
downsampling scale equal to 1/4. The diffusion timestep is
set as 1000. L, norm is chosen as the loss function for the
diffusion process.

Training Details. All models are trained using AdamW
optimizer with the linear warm-up strategy. For the taining
of VAE, the initial learning rate is set as 3e-4 with a co-
sine learning rate decay scheduler, and weight decay is set
as le-5. While for the training of the diffusion model, the
learning rate is set as 1e-4. The batch size is set as 2. Exper-
iments are implemented based on Pytorch and 2 NVIDIA
RTX 4090 GPUs.

8. Model Efficiency

We have added the model efficiency metrics. Table 5 reports
the training time, FLOPs, and per-case inference speed for
models. Overall, FB-Diff offers a good trade-off in perfor-
mance and model efficiency.

Table 5. (a) Generalization on cardiac ultrasound in EchoNet-Dynamic
[40]. (b) Model efficiency on training time, computational costs, and per-
case inference speed.

(a) Cardiac ultrasound (b) Model efficiency

PSNR (dB)T LPIPS| FVD| Training time (h) FLOPs(T) Inference (s)

Model

Voxelmorph [2] 28.40 2.492 295.3 5.6 0.49 1.09
TFRNet [31] 29.95 2.017 261.8 21.3 1.92 1.27
UVI-Net [30] 30.87 1818 243.7 18.5 1.27 0.63
Conditional diff [16] 26.67 2.578 337.2 124 2.37 37.80
FB-Diff 30.51 1.654 227.0 18.0 1.58 29.50

9. Generalization to other modalities

We tested FB-Diff on a different imaging modality to confirm
generality. Using the cardiac ultrasound dataset proposed
by [40], FB-Diff achieves comparable or better performance
than benchmark methods. As revealed in Table 5, FB-Diff
achieves better temporal consistency for interpolated videos
while maintaining promising reconstruction metrics.
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Figure 8. Temporal variation comparison between FB-Diff and existing methods with the linear motion hypothesis.
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Figure 9. The spectral intensity visualizations of the first eight well-learned physiology motion priors on ACDC.



