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7. Extended Related Work
7.1. Test-Time Adaptation

In realistic scenarios, test data often undergoes natural vari-
ations or corruptions, resulting in data distribution shifts be-
tween the training and test phases. Recently, various Test-
Time Adaptation (TTA) approaches have been proposed
to adapt pre-trained models during testing [42, 56]. For
batch normalization calibration methods, BN [36] replaces
the activation statistics estimated from the training set with
those of the test set. For pseudo-labeling methods, TSD
[51] filters out unreliable features or predictions with high
entropy, as lower entropy typically indicates higher accu-
racy, and it further filters unreliable samples using a con-
sistency filter. For consistency training methods, TIPI [27]
identifies input transformations that can simulate domain
shifts and uses regularizers, based on derived bounds, to
ensure the network remains invariant to such transforma-
tions. For clustering-based training methods, TENT [49]
minimizes the prediction entropy of the model on the tar-
get data. EATA [28] selects reliable samples to minimize
entropy loss during test-time adaptation and uses a Fisher
regularizer to stabilize key parameters. The importance of
these parameters is estimated from test samples with pseudo
labels. SAR [29] removes noisy samples with large gradi-
ents and encourages model weights to reach a flat minimum,
enhancing robustness against remaining noise. Recently,
TEA [57], a state-of-the-art TTA approach, introduces an
innovative energy-based perspective to mitigate the effects
of distribution changes and has shown advantages over cur-
rent leading approaches.

7.2. Feature Redundancy Elimination

Feature redundancy is a key concern in both feature extrac-
tion and feature selection [26, 43]. Feature extraction meth-
ods aim to reduce redundancy by transforming the origi-
nal feature space into a new low-dimensional feature space
while retaining as much relevant information as possible.
Two typical feature extraction methods are unsupervised
method Principal Component Analysis (PCA) [52] and su-
pervised method Linear Discriminant Analysis (LDA) [9].
The former one performs a linear transformation to create
a new feature space where the features are uncorrelated,
while the latter one reduces redundancy by identifying fea-
ture spaces that best separate different classes by maximiz-
ing the between-class dispersion while minimizing within-
class dispersion.

Unlike feature extraction, feature selection aims to iden-
tify the most representative and non-redundant subset of

features from the original feature set [47]. Feature selection
methods generally include three strategies: 1) Filter meth-
ods [2, 5] use statistical measures (e.g., mutual information,
Fisher score) to evaluate feature relevance and redundancy.
Features with high relevance are deemed more informative
for target variables, while redundant features are removed
to enhance feature independence. 2) Wrapper methods [35]
assess feature subsets by training models and evaluating
their performance. A common wrapper method is Recursive
Feature Elimination (RFE) [4], which iteratively removes
features and evaluates model performance to identify the
optimal subset. 3) Embedded methods [11, 14] integrate
feature selection within the model training process, such as
Lasso regression [44], which penalizes redundant features
during training to optimize model parameters and select the
most relevant features. Recently, a novel feature selection
approach called SOFT [58] has been proposed, which com-
bines second-order covariance matrices with first-order data
matrices by knowledge contrastive distillation for unsuper-
vised feature selection.

7.3. SOFT [58] (Second-Order Unsupervised Fea-
ture Selection)

SOFT (Second-Order Unsupervised Feature Selection via
Knowledge Contrastive Distillation) [58] proposes a two-
stage framework that integrates first-order and second-order
information for unsupervised feature selection. Given n
samples with d features, it constructs the first-order data
matrix X € R™*¢ and the second-order feature covariance
matrix Mp = X " X. To highlight informative feature in-
teractions, SOFT applies an attention mask 6,; on Mg to
produce a refined attention matrix:

Mp=Mp©0y, My=DMp— My, (10)

where © denotes the element-wise product, and M}, is the
residual matrix. A symmetric constraint and sparsity regu-
larization are enforced on 0 via an ¢ 1 norm:

Loq = 0umll21 + 103f]2.1- (11)

To capture semantic relationships, a shared 2-layer
Graph Convolutional Network (GCN) is applied on M4,
Mp, and M), respectively to obtain attention-based, orig-
inal, and masked representations. Pseudo labels are gener-
ated via PCA and K-means on G 4, guiding a contrastive
learning objective that aligns the original representation
with attention-guided clustering, and pushes the masked
representation away. The final objective integrates all com-
ponents:

m@in Lr+aly+BLy, (12)
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Figure 7. Sensitivity analysis of two G-FRET filtering parameters
using ResNet-18 on OfficeHome’s Art domain.

where L is a supervised loss with pseudo labels, £y is
an attention suppression loss for masked features, and © =
{0n1,0c,0c} denotes all trainable parameters.

In the second stage, SOFT constructs a feature graph
based on the learned attention matrix M4, followed by
graph segmentation to group correlated features. One rep-
resentative feature is selected from each cluster, yielding
a final subset with reduced redundancy. Unlike traditional
ranking-based methods, SOFT emphasizes pairwise rela-
tions and joint structural learning, demonstrating strong per-
formance on multiple benchmarks.

8. Some Filter Tricks

Following the previous works [28, 49, 51], to reduce the
influence of wrong and noisy results from model g, which
may create some incorrect computations, we use Shannon
entropy [37] to filter unreliable instances. Specifically, for
each class, we only take the representations with the top- K3
lowest output entropy H; into computing class centers:

H; == o(pi)logo(p:) (13)

Furthermore, we use the similarity between representa-
tion and class centers to generate soft pseudo labels g; for
the 7th instance, which can be formulated as:

9 = o ([sim(Ra4,,c1),sim(Ra4,, c2), . ..,sim(Ra4,, cc)])
(14)
Based on this, we only consider the predictions with the
top-K5 percent lowest output entropy in a data batch while
keeping label consistency between pseudo labels and their
predictions, i.e., argmax(p;) = argmax(g;), when comput-
ing L and L p. We evaluate the effectiveness of these filter
tricks on G-FRET. As shown in Fig. 7, G-FRET exhibits
insensitivity to K1, and K.

9. Proof of Theoretical Statement

We aim to prove Theorem | by extending the generalization
bound in Theorem 2 of [55], which considers both the mean

and covariance discrepancies between source and target do-
mains.

Theorem 2 in [55]. Let H be a hypothesis class with VC-
dimension d,,. If h € H minimizes the empirical risk é,(h)
over the source domain X5, and h; = arg minpecy €:(h) is
the optimal hypothesis on the target domain X}, assuming
that all h € H are L-Lipschitz continuous, then for any
d € (0,1), with probability at least 1 — 0, the following
holds:

el < )+ (s =l + 2.~ Bl )+
5)
where C' = 24/ dulog(2ne) log(z’;ﬁi?*log(é—) + 2y, and v =
minpey {€5(h(t)) + e:(h(t))}. Here, ps, pe denote the
means of the embeddings in source and target domains, and
34, X denote the corresponding second-order covariance
matrices. }
We define the normalized embedding matrix Z = Z &
such that it has zero mean and unit variance. The empirical

covariance matrix of the normalized embeddings is given
by:

1 ot~
x=-27"2.
n
To quantify redundancy, we follow the second-order unsu-

pervised feature selection method [58], where the redun-
dancy score R is defined as:

Ry(Z) = HZTZ—IdHl, (16)

which measures the deviation of the feature covariance from
an identity matrix. A higher R, indicates stronger linear
dependence between features, i.e., higher redundancy.
Note that:
12— Lalli = Rs(Z).

Thus, we have the approximation:

125 = SellE = 15 — Ia+ 1a = Sl
<NBs = Lallf + Ha = Sellf = Ro(Z)* + Ro(Z:)?

under the assumption that both embeddings are normalized
and zero-centered (as done in batchnorm or layernorm),
in which case the off-diagonal entries dominate the redun-
dancy.

By substituting the above approximation into Theorem 2
of [55], we obtain:

€t(i’L)

<) +0 (Vin =l + B2 + B2 +C




Rearranging terms yields the bound in Theorem 1:
ec(h) —e(hy)

<O (Vlne— it + RAZ7 4 B2 .

O

10. Experimental details

10.1. Datasets

We evaluate the performance of the S-FRET and G-FRET
on two main tasks: domain generalization and image cor-
ruption generalization. Following previous studies, for do-
main generalization, we use the PACS [21] dataset, consist-
ing of images from seven categories (e.g., objects, animals)
across four domains (art paintings, cartoons, photos, and
sketches), and the OfficeHome [48] dataset, which includes
65 categories (e.g., office items, home objects) from four
domains (art, clipart, product, and real-world images). For
image corruption generalization, we utilize the CIFAR10-C
, CIFAR100-C and ImageNet-C [13] datasets, which con-
tain 15 types of corruption at five severity levels. To be
consistent with prior research [20], all experiments are con-
ducted at the highest severity level (level 5). To implement
label shifts, we adjust the CIFAR-100-C datasets to follow
a long-tail distribution [7], denoted as CIFAR-100-C-LT.

10.2. Comparison Methods

The comparison methods we employ include the non-
adaptive source model and four baseline methods which are
commonly used in several studies: BN [36], TENT [49],
EATA [28], and SAR [29]. Additionally, we adopt three re-
cently proposed state-of-the-art methods: TSD [51], TIPI
[27], and TEA [57].

10.3. Models and Implementation

For domain generalization tasks, we use ResNet-18/50 [12]
with batch normalization as the backbone network. These
networks are pretrained on data from three domains and
then tested on the remaining domain.

For image corruption, we use ResNet-18 as the backbone
network. We train it on the clean versions of the CIFAR-
10 and CIFAR-100 datasets, and for ImageNet-C, we lever-
age pre-trained model from TorchVision. When it comes
to CIFAR-10/100-C, we apply all 15 corruption types se-
quentially to assess continuous adaptation capabilities. For
ImageNet-C, we apply each of the 15 corruption types in-
dependently to the adapted model.

To ensure fairness, we report mean and standard devi-
ation of 5 runs with different random seeds (0, 1, 2, 3,
4). In addition, we set the batch size as 128 during test-
ing and independently perform hyperparameter tuning for

each method to achieve the highest possible accuracy as the
final result. All implementations are carried out using Py-
Torch [33] and executed on a single NVIDIA 4090 GPU for
all experiments.

10.4. Complex/Large Dataset

VLCS [45] contains four domains: Caltech101, LabelMe,
SUNO09, and VOC2007, with a total of 10,729 images across
5 classes. The label distribution across the domains in
VLCS exhibits substantial variation , which might be a con-
tributing factor to the poor performance of most Test-Time
Adaptation methods on this dataset [51].

DomainNet [34] is a large-scale dataset used in transfer
learning, consisting of six domains: Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch. It consists of a to-
tal of 586,575 images, with each domain containing 345
classes.

ImageNet-C [13] is significantly larger compared to
the CIFAR10-C and CIFAR100-C. CIFARI10-C and
CIFAR100-C consist of 50,000 training images and 10,000
test images each, divided into 10 and 100 classes respec-
tively. In contrast, ImageNet-C contains 1,281,167 train-
ing images and 50,000 test images, categorized into 1,000
classes. Specifically, ImageNet-C encompasses 15 types of
corruption with five levels of severity. In our experiments,
we employed the highest corruption level (level 5). For the
pre-trained model on ImageNet-C, we utilize the model pro-
vided by TorchVision.

10.5. Experiment Setting Details

For hyper-parameter selection in Domain Generalization
task (Sec. 5.2.1), we first identify the optimal parameter set
based on the highest accuracy achieved on the default do-
main (art paintings in PACS and art in OfficeHome). These
parameters are then applied to other domains to assess their
performance. Specifically, we conduct a search for the
learning rate within the range {1le-7, 5e-7, le-6, 5e-6, le-5,
5e-5, le-4, Se-4, 1e-3, 5e-3, le-2, 5e-2}. For methods that
include an entropy filter component (e.g., TSD, G-FRET),
we explore the entropy filter hyperparameter in the set {1,
5, 10, 15, 20, 50, 100, 200, 300}. For the G-FRET, we per-
form hyperparameter tuning for A within the range {1e-6,
le-5, le-4, 1e-3, 1e-2, le-1, 1, 10, 100} and K5 within the
values {0.5, 0.6, 0.7, 0.8, 0.9, 1}.

For the Image Corruption task (Sec. 5.2.2), each Test-
Time Adaptation (TTA) method continuously adapts to 15
types of image corruptions in the specified order for CIFAR-
10/100-C: [Gaussian Noise, Shot Noise, Impulse Noise,
Defocus Blur, Glass Blur, Motion Blur, Zoom Blur, Snow,
Frost, Fog, Brightness, Contrast, Elastic Transformation,
Pixelate, JPEG Compression]. However, for ImageNet-C,
we adopt a strategy of independently adapting to each of the
15 corruption types separately. The hyperparameter ranges



remain consistent with those utilized in Domain Generaliza-
tion. The best performance results obtained for each method
are selected as the final experimental outcomes.

11. Additional Experimental Results
11.1. Detailed Results Across Five Random Seeds

To ensure the fairness of our evaluation, we conduct exper-
iments using five different random seeds (0, 1, 2, 3, and 4).
The detailed results corresponding to each random seed are
presented in Tabs. 7 to 11, which highlights the robustness
and consistency of our proposed methods S-FRET and G-
FRET.

11.2. Detailed Results for Image Corruption

In this section, we provide a complete listing of compar-
isons between S-FRET, G-FRET, and other state-of-the-
art methods for Image Corruption (Sec. 5.2.2) on CIFAR-
10/100-C and ImageNet-C datasets at damage level of 5, as
shown in Tabs. 12 to 14.

11.3. Detailed Results for tSNE Experiment

In this section, we supplement the t-SNE visualizations of
embedded features (Sec. 5.3.3) across 15 corruption types
in the CIFAR-10-C dataset using ResNet-18 and ViT-B/16
models, with the specific results presented in Figs. 8 and 9.

11.4. Detailed Results for Scalability Experiment

In the Scalability experiment (Sec. 5.4.3), we validate our
methods using larger and more complex datasets including
VLCS, DomainNet, and ImageNet-C, as well as on the ViT
backbone, to demonstrate that our approach can robustly
improve performance across diverse datasets and different
backbones.

For VLCS and DomainNet, we employ hyperparameter
selection within the same range as the Domain General-
ization task. However, unlike the Domain Generalization
task, we independently selected hyperparameters for each
domain rather than applying the parameters from the default
domain to others.

For ImageNet-C, we adapt the TTA method to each cor-
ruption type individually. We select hyperparameters opti-
mized for the default corruption type (Gaussian Noise), and
applied these parameters to other corruption types. The de-
tailed results are presented in Tab. 15, Tab. 16, and Tab. 17
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Figure 8. Discriminability visualization of embedded features before and after adaptation via S-FRET and G-FRET, on 15 corruption types
of the CIFAR-10-C dataset using ResNet-18.
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Figure 9. Discriminability visualization of embedded features before and after adaptation via S-FRET and G-FRET, on 15 corruption types
of the CIFAR-10-C dataset using ViT-B/16.



Backbone ‘ Method ‘ PACS OfficeHome

Avg Avg
\ | A C P S A C P R
Source [12] | 7837 77.39 9503 7658 81.84 | 5645 48.02 7134 7223 6201
BN [36] 80.91 80.80 9509 73.84 8266 | 5562 49.32 70.60 7266 62.05

SAR [29] 8330 82.17 95.09 79.69 85.06 | 57.15 5031 70.24 7234 62.51
EATA [28] | 82771 81.53 9491 7419 8334 | 5641 49.62 71.66 7227 6249
ResNet-18 | TENT [49] | 82.76 82.68 95.33 78.19 84.74 | 56.94 50.65 71.86 7292 63.09
TSD [51] 86.96 86.73 96.41 8122 87.83 | 58.06 49.81 71.37 70.67 62.47
TEA [57] 86.47 8579 95.69 80.81 87.19 | 58.63 5056 7195 7292 63.52
TIPI [27] 8550 8490 96.05 83.13 87.39 | 57.03 50.61 72.07 7328 63.25
S-FRET 86.28 86.69 9635 7422 85.88 | 56.20 50.08 71.57 72.64 62.62
G-FRET 86.82 87.03 96.65 8129 8795 | 57.73 5136 7310 7299 63.79

Source [12] | 83.89 81.02 96.17 78.04 8478 | 64.85 5226 7504 7588 67.01
BN [36] 85.50 85.62 96.77 72.05 8499 | 63.54 5271 73.89 7505 66.30
SAR[29] | 8555 85.62 9677 7524 8579 | 64.77 5592 7524 7581 67.94
EATA [28] | 84.67 8520 9635 7236 84.64 | 6391 5404 7472 7551 67.05
ResNet-50 | TENT [49] | 88.09 87.33 97.19 79.69 88.07 | 64.61 5480 7506 7620 67.67
TSD[51] | 9043 89.89 97.84 81.80 89.99 | 6527 56.77 76.19 7641 68.66
TEA[57] | 88.09 87.88 9749 8139 8871 | 6625 5750 7520 76.68 68.91
TIPI [27] 88.18 87.93 97.13 78.80 88.01 | 6473 5624 7547 77.00 68.36
S-FRET 89.99 8951 97.84 7630 8841 | 64.15 5450 7574 7625 67.66
G-FRET 90.72 9015 97.84 8229 90.25 | 6642 57.11 7621 7735 69.27

Table 7. Atrandom seed 0, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

Backbone ‘ Method ‘ PACS Avg OfficeHome Avg
\ | A C P S A C P R
Source [12] | 7837 7739 95.03 76.58 81.84 | 5645 48.02 7134 7223 62.01
BN [36] 81.10 80.59 9533 73.84 8271 | 5583 48.80 70.78 7221 61.90

SAR [29] 84.33 80.03 9533 7959 84.82 | 5690 50.22 70.06 72.89 62.52
EATA [28] | 8296 8247 9545 73.00 8347 | 57.03 50.13 71.03 7296 62.79
ResNet-18 | TENT [49] | 84.91 81.19 9557 82.82 86.12 | 57.77 50.22 7256 72.62 63.29
TSD [51] 86.62 86.39 9587 81.50 87.59 | 57.52 49.26 72.18 7120 62.54
TEA [57] 87.79 86.60 9599 82.21 88.15 | 56.78 50.70 72.02 72.85 63.09
TIPI [27] 85.11 8323 9587 85.03 87.31 | 57.81 50.19 7256 7296 63.38
S-FRET 85.84 86.69 9593 7284 8533 | 56.53 49.51 T1.71 7253 62.57
G-FRET 87.26 86.99 96.59 8274 88.39 | 57.23 50.61 73.51 7317 63.63

Source [12] | 83.89 81.02 96.17 78.04 84.78 | 64.85 5226 75.04 7588 67.01
BN [36] 85.01 85.88 96.65 71.88 84.85 | 63.00 53.54 73.60 7496 66.27
SAR [29] 85.01 85.88 96.65 7592 85.86 | 65.06 5631 7450 7645 68.08
EATA [28] | 8535 8541 96.71 7223 8492 | 64.81 53.88 7380 75.60 67.02
ResNet-50 | TENT [49] | 86.23 86.95 97.01 79.77 8749 | 64.81 5558 74775 7638 67.88
TSD [51] 89.75 89.63 9749 83.76 90.16 | 65.72 57.14 76.39 76.18 68.86
TEA [57] 89.16 88.05 96.89 8254 89.16 | 6522 57.69 75.67 7737 68.99
TIPI [27] 87.16 8699 97.07 8099 88.05 | 6539 56.11 75.69 7627 68.36
S-FRET 89036 89.46 9737 7857 88.69 | 64.61 5528 75.60 76.50 68.00
G-FRET 89.75 8997 9749 8552 90.68 | 66.17 57.87 7693 76.80 69.44

Table 8. Atrandom seed 1, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.



Backbone ‘ Method ‘ PACS OfficeHome

Avg Avg
\ | A C P S A C P R
Source [12] | 7837 77.39 9503 7658 81.84 | 5645 48.02 7134 7223 6201
BN [36] 81.05 8042 9497 7373 8254 | 5571 49.10 7085 7255 62.05

SAR [29] 83.69 82.08 9497 81.01 8544 | 57.11 50.70 71.03 7276 62.90
EATA [28] | 80.91 81.06 9497 7277 8243 | 5649 49.10 7195 7322 62.69
ResNet-18 | TENT [49] | 81.20 83.70 95.51 81.42 8546 | 57.19 5042 7180 73.08 63.12
TSD [51] 87.06 87.12 9593 83.07 88.29 | 5748 51.11 7123 7032 62.54
TEA [57] 87.09 8797 9647 8150 88.26 | 56.53 5042 7191 7296 62.96
TIPI [27] 82.86 84.04 9593 84.58 86.85 | 57.19 5049 72.00 7345 63.28
S-FRET 86.28 86.35 95.69 7834 86.66 | 56.04 4946 71.64 7289 62.51
G-FRET 8745 87.07 96.35 83.66 88.63 | 57.23 51.59 72.85 73.84 63.88

Source [12] | 83.89 81.02 96.17 78.04 8478 | 64.85 5226 7504 75.88 67.01
BN [36] 84.72 8520 96.59 7272 84.80 | 63.33 53.08 73.64 7482 66.22
SAR[29] | 8472 8520 9659 75.18 8542 | 64.73 5693 7486 76.15 68.17
EATA [28] | 8545 85.11 9647 7238 84.85 | 63.86 5473 7400 75.60 67.05
ResNet-50 | TENT [49] | 87.06 8592 96.65 7534 8624 | 6432 5560 7409 76.02 67.51
TSD[51] | 91.85 89.76 97.49 79.92 89.75 | 64.89 5746 7576 7654 68.66
TEA[57] | 88.57 8827 97.07 80.48 88.60 | 6593 57.00 7596 7625 68.78
TIPI [27] 8745 8541 96.89 77.53 86.82 | 64.85 5698 75.02 7641 6831
S-FRET 90.77 88.69 97.31 77.07 88.46 | 64.44 5540 7526 7629 67.85
G-FRET 91.85 89.59 97.54 7842 89.35 | 66.05 5773 7617 7725 69.30

Table 9. Atrandom seed 2, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

Backbone ‘ Method ‘ PACS Avg OfficeHome Avg
\ | A C P S A C P R
Source [12] | 7837 7739 95.03 76.58 81.84 | 5645 48.02 7134 7223 62.01
BN [36] 80.96 80.46 95.03 74.12 82.64 | 5575 49.67 70.76 72.64 62.20

SAR [29] 83.40 81.02 95.03 81.01 85.11 | 57.27 50.68 70.80 73.08 62.96
EATA [28] | 8223 80.84 9497 7231 82.59 | 5632 4997 7153 7257 62.60
ResNet-18 | TENT [49] | 83.15 7991 9527 82.08 85.10 | 57.03 50.77 72.09 7340 63.32
TSD [51] 86.77 86.52 9593 83.61 8821 | 57.85 4985 7137 7152 62.65
TEA [57] 87.26 86.26 96.59 83.61 8843 | 56.70 5042 71.75 72.69 62.89
TIPI [27] 84.57 8340 9557 83.69 86.81 | 5694 50.72 72.11 7326 63.26
S-FRET 86.18 86.35 96.05 75.82 86.10 | 56.12 50.36 71.68 72.80 62.74
G-FRET 86.87 87.33 95.87 84.07 88.53 | 57.31 S51.64 7276 73.65 63.84

Source [12] | 83.89 81.02 96.17 78.04 8478 | 64.85 5226 7504 7588 67.01
BN [36] 85.16 8520 96.71 72.18 84.81 | 6341 5288 7326 7558 66.28
SAR[29] | 8540 8520 9671 7686 86.04 | 64.73 56.77 7475 76.50 68.19
EATA [28] | 8521 8549 9641 72.10 84.80 | 64.15 5336 7441 7542 66.83
ResNet-50 | TENT [49] | 86.18 86.90 96.95 79.97 87.50 | 64.32 5551 7493 7627 67.76
TSD[51] | 9048 9032 97.78 8198 90.14 | 6531 5659 7574 76.75 68.60
TEA[57] | 88.13 8695 97.07 8241 88.64 | 6527 5856 7623 77.39 69.36
TIPI [27] 86.77 8754 97.07 81.04 88.10 | 64.65 5672 7520 77.09 68.42
S-FRET 89.31 8895 97.72 78.16 88.54 | 6461 5510 7538 7659 67.92
G-FRET 90.82 90.23 97.90 8346 90.60 | 6547 57.34 7628 7732 69.10

Table 10. At random seed 3, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18
and ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.



Backbone ‘

PACS

OfficeHome

Method Avg Avg
\ | A C P S A C P R
Source [12] | 7837 77.39 9503 7658 81.84 | 5645 48.02 7134 7223 6201
BN [36] 81.10 81.06 9527 73.63 8277 | 5538 49.28 70.65 7239 61.92
SAR[29] | 8340 8204 9527 8091 8540 | 58.06 5079 7139 7266 63.23
EATA [28] | 81.49 79.65 9551 74.68 82383 | 5587 49.92 7134 7322 6259
ResNet-18 | TENT[49] | 85.69 83.83 96.05 80.73 86.58 | 57.31 50.17 72.61 7342 6338
TSD[51] | 87.84 87.93 9575 8341 8873 | 5810 5022 71.10 70.87 62.57
TEA[57] | 8657 86.05 9613 8272 87.87 | 56.70 5022 7157 7285 62.83
TIPI[27] | 8589 8562 9587 83.84 87.80 | 57.19 50.10 7240 7342 63.28
S-FRET 86.67 87.24 9581 7829 87.00 | 56.41 4990 71.66 7271 62.67
G-FRET | 87.60 87.54 9593 85.06 89.03 | 57.97 51.20 7299 7338 63.89
Source [12] | 83.89 8102 96.17 78.04 8478 | 64.85 5226 7504 7588 67.01
BN [36] 8555 8558 9629 7241 8496 | 6321 5290 7355 7507 66.18
SAR[29] | 8555 8558 9629 76.89 86.08 | 64.61 5556 7479 7597 67.73
EATA [28] | 85.01 8558 96.77 7226 84.90 | 6452 5446 7430 7647 6744
ResNet-50 | TENT [49] | 87.79 86.69 96.83 79.41 87.68 | 64.61 5427 7459 76.11 67.39
TSD[51] | 9165 90.10 97.19 8033 89.82 | 6547 57.00 7653 76.73 68.93
TEA[57] | 8857 8759 97.37 8040 8848 | 6543 57.02 7592 7654 68.73
TIPI[27] | 8853 86.99 96.89 79.94 8809 | 6498 5629 7520 7691 6834
S-FRET 90.09 8840 97.07 77.14 88.17 | 6428 5503 7583 7645 67.90
G-FRET 91.80 90.06 97.19 81.93 90.24 | 66.50 58.08 76.71 77.23 69.63

Table 11. At random seed 4, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18
and ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

| ¢

Method Avg
‘ Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] | 27.43 33.56 21.57 43.64 40.48 51.26 51.29 68.18 54.52 66.65 87.50 27.59 67.06 48.86 72.37 50.80
BN [36] 66.30 68.18 57.13 82.50 5H7.44 79.73 8198 74.83 7412 7891 86.96 82.02 70.23 7343 7094 73.65
TENT [49] | 67.26 71.46 61.21 84.07 61.37 81.66 84.36 78.18 77.55 80.14 88.44 8141 7354 7853 76.19 76.36
EATA [28] | 66.39 68.50 57.32 8252 57.42 79.94 82.09 74.80 74.14 7890 86.98 81.93 70.10 73.62 70.88 73.70
SAR [29] 66.46 68.24 57.47 8252 57.83 79.76 81.98 74.83 7429 7892 86.96 8236 70.26 7343 7094 73.75
TIPI [27] 67.57 72.14 62.88 84.19 63.55 81.63 84.44 79.06 79.07 79.61 88.68 81.92 7533 79.92 7811 77.21
TEA [57] 66.71 69.24 59.46 82.78 59.98 80.87 82.88 76.40 7560 79.82 86.72 81.48 71.89 7491 7291 74.78
TSD [51] 66.97 70.31 60.63 83.24 61.10 81.52 83.97 77.15 76.75 80.08 86.76 80.42 72.66 76.43 73.42 75.43
S-FRET 66.52 69.45 59.40 82.78 59.43 80.64 8298 76.05 75.73 79.59 86.92 80.68 71.56 75.11 72.61 74.63
G-FRET 67.79 T71.83 62.81 8431 62.63 82.07 84.89 7891 79.00 81.01 88.87 82.69 74.86 79.47 T77.74 77.26

Table 12. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, with 15 types of damage applied
sequentially to a continuously adapted model. The best results are highlighted in boldface, and the second ones are underlined.



| ¢

Method Avg
‘ Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] | 10.46 12.49 3.36 34.44 23.63 38.10 42.67 39.25 33.01 32.84 5578 11.55 46.48 34.88 46.15 31.01
BN [36] 39.84 39.51 29.88 56.43 41.08 54.34 58.82 4852 49.36 46.60 61.82 48.78 49.92 54.17 4539 48.30
TENT [49] | 40.61 41.94 32.09 57.84 44.35 56.57 60.96 51.51 52.03 49.23 63.94 49.62 53.53 57.60 50.03 50.79
EATA [28] | 40.59 41.82 32.58 57.97 43.43 56.76 60.33 50.79 51.90 48.71 63.83 49.88 53.96 57.60 50.50 50.71
SAR [29] 40.09 40.67 31.52 57.01 42.16 55.63 59.54 50.53 50.31 47.73 62.50 43.27 51.03 55.49 48.80 49.09
TIPI [27] 40.62 42.29 32.67 57.06 44.84 55.45 59.58 52,19 52.15 46.33 6191 43.60 52.20 57.39 50.67 49.93
TEA [57] 40.13  39.90 30.82 56.28 41.48 54.73 59.16 48.79 49.31 46.26 61.41 48.48 50.22 54.03 46.63 48.51
TSD [51] 39.84 39.65 30.14 56.63 41.17 54.65 59.03 48.71 49.71 4725 61.95 4884 50.65 54.78 46.36 48.62
S-FRET 39.84 3994 31.10 56.66 42.01 55.19 59.46 48.66 49.21 47.21 61.52 46.80 50.66 53.88 45.75 48.53
G-FRET 41.08 4323 33.69 5749 44.07 56.87 61.16 51.24 52.18 49.25 63.12 50.04 54.09 5742 51.02 51.06

Table 13. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, with 15 types of damage applied
sequentially to a continuously adapted model. The best results are highlighted in boldface, and the second ones are underlined.

Method ‘ ImageNet-C Ave
‘ Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] | 1.54 2.27 1.48 11.44 868 11.12 17.62 10.64 16.21 14.02 51.52 344 1649 2335 30.67 14.70
BN [36] 13.65 14.84 14.17 1195 13.04 23.34 33.89 29.18 2842 40.80 5811 12.09 38.92 44.35 37.08 27.59
TENT [49] | 2345 25.71 24.08 18.79 20.90 33.54 4285 39.64 3295 50.36 60.13 10.68 48.81 51.96 46.98 35.39
EATA [28] | 28.24 30.16 28.88 2530 25.74 36.61 43.71 41.80 36.42 50.87 59.12 3175 49.10 52.33 47.82 39.19
SAR [29] 28.04 29.59 27.88 23.66 23.90 36.16 43.40 40.94 36.71 51.01 60.18 27.38 48.95 5247 4798 38.55
TIPI [27] 2445 26.52 24.75 20.37 2225 33.65 4246 39.31 3347 4993 5944 1253 48.41 51.51 46.92 35.73
TEA [57] 18.82  20.50 19.00 16.27 17.68 28.51 39.17 35.19 3226 46.92 59.16 1542 44.39 4881 43.64 32.38
TSD [51] 15.60 16.99 16.13 15.59 1541 28.69 38.07 3292 30.01 4590 58.69 7.62 41.06 47.47 41.52 30.11
S-FRET 15.04 16.40 15.57 13.77 14.67 25.65 36.00 31.08 29.08 43.13 58.64 12.33 40.37 45.76 39.07 29.10
G-FRET 24.85 2747 2549 20.82 22.71 35.10 43.76 40.66 36.68 50.80 60.3 14.20 49.28 52.24 47.52 36.79

Table 14. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, with 15 types of damage applied
independently to the adapted model based on ResNet-18. The best results are highlighted in boldface, and the second ones are underlined.

Method VLCS Avg
C L S v

ResNet-18 9449 60.96 67.73 71.50 73.67
+S-FRET  96.11 59.71 67.28 7251 73.90
+G-FRET 96.68 6442 67.82 7399 75.73
ResNet-50 95.55 60.77 71.12 72.16 74.90
+S-FRET  96.05 57.89 69.86 78.10 7548
+G-FRET 96.96 58.51 7227 7793 7642
ViT-B/16 97.81 64.38 69.71 73.84 76.44
+S-FRET  97.81 67.32 69.59 7399 77.18
+G-FRET 98.52 68.00 7349 74.23 78.56

Table 15. Accuracy on the VLCS dataset with different backbones: ResNet-18/50 and ViT-B/16.



DomainNet

Method Avg
C I P Q R S
ResNet-18  57.30 16.86 45.03 12.69 56.89 46.00 39.13
+S-FRET 57.69 1258 4455 15.18 5771 4786 39.26
+G-FRET 5897 14.10 46.16 15.22 57.42 49.48 40.22
ResNet-50  63.68 2093 50.35 1295 62.16 51.42 43.58
+S-FRET 6395 15.72 50.00 15.23 63.51 53.09 43.59
+G-FRET 64.85 17.61 51.19 1471 63.33 53.61 44.22
ViT-B/16 7191 2556 5595 1836 70.66 57.45 4998
+S-FRET 7230 27.17 59.45 1725 71.48 5965 51.22
+G-FRET 72.63 2604 5828 1892 72.61 60.50 51.50

Table 16. Accuracy on the DomainNet dataset with different backbones: ResNet-18/50 and ViT-B/16.

ImageNet-C

Method Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

ResNet-18  1.54 2.27 148 11.44 868 11.12 1762 10.64 16.21 14.02 51.52 3.44 16.49 23.35 30.67 14.70
+S-FRET  15.04 16.40 15.57 13.77 14.67 25.65 36.00 31.08 29.08 43.13 58.64 12.33 40.37 45.76 39.07 29.10
+G-FRET 24.85 27.47 2549 20.82 2271 3510 43.76 40.66 36.68 50.80 60.30 14.20 49.28 5224 47.52 36.79
ResNet-50  3.00 3.70 2.64 1791 9.74 1471 2245 16.60 23.06 24.01 59.12 538 16.51 20.87 32.63 18.15
+S-FRET  19.26 18.81 19.91 18.66 18.16 29.96 43.32 3829 34.02 51.74 66.52 16.69 47.22 52.51 44.60 34.65
+G-FRET  29.22 29.13 29.83 2599 26.68 44.10 50.83 49.15 4340 5843 67.35 17.88 57.12 59.68 53.76 42.84
ViT-B/16 35.09 32.16 35.88 31.42 2531 39.45 31.55 24.47 30.13 54.74 6448 4898 34.20 53.17 56.45 39.83
+S-FRET  51.62 53.02 53.54 49.54 50.21 56.68 59.19 6193 61.22 70.65 72.85 65.43 66.11 67.87 65.61 60.36
+G-FRET 57.56 56.80 58.02 56.86 57.42 62.11 5898 41.25 59.39 72.69 7731 7033 66.61 7193 7025 62.50

Table 17. Accuracy on the ImageNet-C dataset with different backbones: ResNet-18/50 and ViT-B/16.
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