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7. Extended Related Work
7.1. Test-Time Adaptation
In realistic scenarios, test data often undergoes natural vari-
ations or corruptions, resulting in data distribution shifts be-
tween the training and test phases. Recently, various Test-
Time Adaptation (TTA) approaches have been proposed
to adapt pre-trained models during testing [42, 56]. For
batch normalization calibration methods, BN [36] replaces
the activation statistics estimated from the training set with
those of the test set. For pseudo-labeling methods, TSD
[51] filters out unreliable features or predictions with high
entropy, as lower entropy typically indicates higher accu-
racy, and it further filters unreliable samples using a con-
sistency filter. For consistency training methods, TIPI [27]
identifies input transformations that can simulate domain
shifts and uses regularizers, based on derived bounds, to
ensure the network remains invariant to such transforma-
tions. For clustering-based training methods, TENT [49]
minimizes the prediction entropy of the model on the tar-
get data. EATA [28] selects reliable samples to minimize
entropy loss during test-time adaptation and uses a Fisher
regularizer to stabilize key parameters. The importance of
these parameters is estimated from test samples with pseudo
labels. SAR [29] removes noisy samples with large gradi-
ents and encourages model weights to reach a flat minimum,
enhancing robustness against remaining noise. Recently,
TEA [57], a state-of-the-art TTA approach, introduces an
innovative energy-based perspective to mitigate the effects
of distribution changes and has shown advantages over cur-
rent leading approaches.

7.2. Feature Redundancy Elimination
Feature redundancy is a key concern in both feature extrac-
tion and feature selection [26, 43]. Feature extraction meth-
ods aim to reduce redundancy by transforming the origi-
nal feature space into a new low-dimensional feature space
while retaining as much relevant information as possible.
Two typical feature extraction methods are unsupervised
method Principal Component Analysis (PCA) [52] and su-
pervised method Linear Discriminant Analysis (LDA) [9].
The former one performs a linear transformation to create
a new feature space where the features are uncorrelated,
while the latter one reduces redundancy by identifying fea-
ture spaces that best separate different classes by maximiz-
ing the between-class dispersion while minimizing within-
class dispersion.

Unlike feature extraction, feature selection aims to iden-
tify the most representative and non-redundant subset of

features from the original feature set [47]. Feature selection
methods generally include three strategies: 1) Filter meth-
ods [2, 5] use statistical measures (e.g., mutual information,
Fisher score) to evaluate feature relevance and redundancy.
Features with high relevance are deemed more informative
for target variables, while redundant features are removed
to enhance feature independence. 2) Wrapper methods [35]
assess feature subsets by training models and evaluating
their performance. A common wrapper method is Recursive
Feature Elimination (RFE) [4], which iteratively removes
features and evaluates model performance to identify the
optimal subset. 3) Embedded methods [11, 14] integrate
feature selection within the model training process, such as
Lasso regression [44], which penalizes redundant features
during training to optimize model parameters and select the
most relevant features. Recently, a novel feature selection
approach called SOFT [58] has been proposed, which com-
bines second-order covariance matrices with first-order data
matrices by knowledge contrastive distillation for unsuper-
vised feature selection.

7.3. SOFT [58] (Second-Order Unsupervised Fea-
ture Selection)

SOFT (Second-Order Unsupervised Feature Selection via
Knowledge Contrastive Distillation) [58] proposes a two-
stage framework that integrates first-order and second-order
information for unsupervised feature selection. Given n
samples with d features, it constructs the first-order data
matrix X ∈ Rn×d and the second-order feature covariance
matrix MF = X⊤X . To highlight informative feature in-
teractions, SOFT applies an attention mask θM on MF to
produce a refined attention matrix:

MA = MF ⊙ θM , MM = MF −MA, (10)

where ⊙ denotes the element-wise product, and MM is the
residual matrix. A symmetric constraint and sparsity regu-
larization are enforced on θM via an ℓ2,1 norm:

L2,1 = ∥θM∥2,1 + ∥θ⊤M∥2,1. (11)

To capture semantic relationships, a shared 2-layer
Graph Convolutional Network (GCN) is applied on MA,
MF , and MM respectively to obtain attention-based, orig-
inal, and masked representations. Pseudo labels are gener-
ated via PCA and K-means on GA, guiding a contrastive
learning objective that aligns the original representation
with attention-guided clustering, and pushes the masked
representation away. The final objective integrates all com-
ponents:

min
Θ

LF + αLM + βL2,1, (12)
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Figure 7. Sensitivity analysis of two G-FRET filtering parameters
using ResNet-18 on OfficeHome’s Art domain.

where LF is a supervised loss with pseudo labels, LM is
an attention suppression loss for masked features, and Θ =
{θM , θG, θC} denotes all trainable parameters.

In the second stage, SOFT constructs a feature graph
based on the learned attention matrix MA, followed by
graph segmentation to group correlated features. One rep-
resentative feature is selected from each cluster, yielding
a final subset with reduced redundancy. Unlike traditional
ranking-based methods, SOFT emphasizes pairwise rela-
tions and joint structural learning, demonstrating strong per-
formance on multiple benchmarks.

8. Some Filter Tricks
Following the previous works [28, 49, 51], to reduce the
influence of wrong and noisy results from model g, which
may create some incorrect computations, we use Shannon
entropy [37] to filter unreliable instances. Specifically, for
each class, we only take the representations with the top-K1

lowest output entropy Hi into computing class centers:

Hi = −
∑

σ(pi) log σ(pi) (13)

Furthermore, we use the similarity between representa-
tion and class centers to generate soft pseudo labels ŷi for
the ith instance, which can be formulated as:

ŷi = σ ([sim(RAi
, c1), sim(RAi

, c2), . . . , sim(RAi
, cC)])

(14)
Based on this, we only consider the predictions with the

top-K2 percent lowest output entropy in a data batch while
keeping label consistency between pseudo labels and their
predictions, i.e., argmax(pi) = argmax(ŷi), when comput-
ing LR and LP . We evaluate the effectiveness of these filter
tricks on G-FRET. As shown in Fig. 7, G-FRET exhibits
insensitivity to K1, and K2.

9. Proof of Theoretical Statement
We aim to prove Theorem 1 by extending the generalization
bound in Theorem 2 of [55], which considers both the mean

and covariance discrepancies between source and target do-
mains.

Theorem 2 in [55]. Let H be a hypothesis class with VC-
dimension dv . If ĥ ∈ H minimizes the empirical risk ϵ̂s(h)
over the source domain Xs, and h∗

t = argminh∈H ϵt(h) is
the optimal hypothesis on the target domain Xt, assuming
that all h ∈ H are L-Lipschitz continuous, then for any
δ ∈ (0, 1), with probability at least 1 − δ, the following
holds:

ϵt(ĥ) ≤ ϵt(h
∗
t )+O

(√
∥µs − µt∥2F + ∥Σs − Σt∥2F

)
+C,

(15)

where C = 2
√

dv log(2ns)−log(δ)
2ns

+ 2γ, and γ =

minh∈H {ϵs(h(t)) + ϵt(h(t))}. Here, µs, µt denote the
means of the embeddings in source and target domains, and
Σs, Σt denote the corresponding second-order covariance
matrices.

We define the normalized embedding matrix Z̃ = Z−µ
σ

such that it has zero mean and unit variance. The empirical
covariance matrix of the normalized embeddings is given
by:

Σ =
1

n
Z̃⊤Z̃.

To quantify redundancy, we follow the second-order unsu-
pervised feature selection method [58], where the redun-
dancy score Rs is defined as:

Rs(Z) =
∥∥∥Z̃⊤Z̃ − Id

∥∥∥
1
, (16)

which measures the deviation of the feature covariance from
an identity matrix. A higher Rs indicates stronger linear
dependence between features, i.e., higher redundancy.

Note that:
∥Σ− Id∥1 = Rs(Z).

Thus, we have the approximation:

∥Σs − Σt∥2F = ∥Σs − Id + Id − Σt∥2F
≤ ∥Σs − Id∥2F + ∥Id − Σt∥2F ≈ Rs(Zs)

2 +Rs(Zt)
2

under the assumption that both embeddings are normalized
and zero-centered (as done in batchnorm or layernorm),
in which case the off-diagonal entries dominate the redun-
dancy.

By substituting the above approximation into Theorem 2
of [55], we obtain:

ϵt(ĥ)

≤ ϵt(h
∗
t ) +O

(√
∥µs − µt∥2F +Rs(Zs)2 +Rs(Zt)2

)
+ C.



Rearranging terms yields the bound in Theorem 1:

ϵt(ĥ)− ϵt(h
∗
t )

≤ O
(√

∥µs − µt∥2F +Rs(Zs)2 +Rs(Zt)2
)
+ C.

10. Experimental details
10.1. Datasets
We evaluate the performance of the S-FRET and G-FRET
on two main tasks: domain generalization and image cor-
ruption generalization. Following previous studies, for do-
main generalization, we use the PACS [21] dataset, consist-
ing of images from seven categories (e.g., objects, animals)
across four domains (art paintings, cartoons, photos, and
sketches), and the OfficeHome [48] dataset, which includes
65 categories (e.g., office items, home objects) from four
domains (art, clipart, product, and real-world images). For
image corruption generalization, we utilize the CIFAR10-C
, CIFAR100-C and ImageNet-C [13] datasets, which con-
tain 15 types of corruption at five severity levels. To be
consistent with prior research [20], all experiments are con-
ducted at the highest severity level (level 5). To implement
label shifts, we adjust the CIFAR-100-C datasets to follow
a long-tail distribution [7], denoted as CIFAR-100-C-LT.

10.2. Comparison Methods
The comparison methods we employ include the non-
adaptive source model and four baseline methods which are
commonly used in several studies: BN [36], TENT [49],
EATA [28], and SAR [29]. Additionally, we adopt three re-
cently proposed state-of-the-art methods: TSD [51], TIPI
[27], and TEA [57].

10.3. Models and Implementation
For domain generalization tasks, we use ResNet-18/50 [12]
with batch normalization as the backbone network. These
networks are pretrained on data from three domains and
then tested on the remaining domain.

For image corruption, we use ResNet-18 as the backbone
network. We train it on the clean versions of the CIFAR-
10 and CIFAR-100 datasets, and for ImageNet-C, we lever-
age pre-trained model from TorchVision. When it comes
to CIFAR-10/100-C, we apply all 15 corruption types se-
quentially to assess continuous adaptation capabilities. For
ImageNet-C, we apply each of the 15 corruption types in-
dependently to the adapted model.

To ensure fairness, we report mean and standard devi-
ation of 5 runs with different random seeds (0, 1, 2, 3,
4). In addition, we set the batch size as 128 during test-
ing and independently perform hyperparameter tuning for

each method to achieve the highest possible accuracy as the
final result. All implementations are carried out using Py-
Torch [33] and executed on a single NVIDIA 4090 GPU for
all experiments.

10.4. Complex/Large Dataset
VLCS [45] contains four domains: Caltech101, LabelMe,
SUN09, and VOC2007, with a total of 10,729 images across
5 classes. The label distribution across the domains in
VLCS exhibits substantial variation , which might be a con-
tributing factor to the poor performance of most Test-Time
Adaptation methods on this dataset [51].
DomainNet [34] is a large-scale dataset used in transfer
learning, consisting of six domains: Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch. It consists of a to-
tal of 586,575 images, with each domain containing 345
classes.
ImageNet-C [13] is significantly larger compared to
the CIFAR10-C and CIFAR100-C. CIFAR10-C and
CIFAR100-C consist of 50,000 training images and 10,000
test images each, divided into 10 and 100 classes respec-
tively. In contrast, ImageNet-C contains 1,281,167 train-
ing images and 50,000 test images, categorized into 1,000
classes. Specifically, ImageNet-C encompasses 15 types of
corruption with five levels of severity. In our experiments,
we employed the highest corruption level (level 5). For the
pre-trained model on ImageNet-C, we utilize the model pro-
vided by TorchVision.

10.5. Experiment Setting Details
For hyper-parameter selection in Domain Generalization
task (Sec. 5.2.1), we first identify the optimal parameter set
based on the highest accuracy achieved on the default do-
main (art paintings in PACS and art in OfficeHome). These
parameters are then applied to other domains to assess their
performance. Specifically, we conduct a search for the
learning rate within the range {1e-7, 5e-7, 1e-6, 5e-6, 1e-5,
5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2}. For methods that
include an entropy filter component (e.g., TSD, G-FRET),
we explore the entropy filter hyperparameter in the set {1,
5, 10, 15, 20, 50, 100, 200, 300}. For the G-FRET, we per-
form hyperparameter tuning for λ within the range {1e-6,
1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100} and K2 within the
values {0.5, 0.6, 0.7, 0.8, 0.9, 1}.

For the Image Corruption task (Sec. 5.2.2), each Test-
Time Adaptation (TTA) method continuously adapts to 15
types of image corruptions in the specified order for CIFAR-
10/100-C: [Gaussian Noise, Shot Noise, Impulse Noise,
Defocus Blur, Glass Blur, Motion Blur, Zoom Blur, Snow,
Frost, Fog, Brightness, Contrast, Elastic Transformation,
Pixelate, JPEG Compression]. However, for ImageNet-C,
we adopt a strategy of independently adapting to each of the
15 corruption types separately. The hyperparameter ranges



remain consistent with those utilized in Domain Generaliza-
tion. The best performance results obtained for each method
are selected as the final experimental outcomes.

11. Additional Experimental Results
11.1. Detailed Results Across Five Random Seeds
To ensure the fairness of our evaluation, we conduct exper-
iments using five different random seeds (0, 1, 2, 3, and 4).
The detailed results corresponding to each random seed are
presented in Tabs. 7 to 11, which highlights the robustness
and consistency of our proposed methods S-FRET and G-
FRET.

11.2. Detailed Results for Image Corruption
In this section, we provide a complete listing of compar-
isons between S-FRET, G-FRET, and other state-of-the-
art methods for Image Corruption (Sec. 5.2.2) on CIFAR-
10/100-C and ImageNet-C datasets at damage level of 5, as
shown in Tabs. 12 to 14.

11.3. Detailed Results for tSNE Experiment
In this section, we supplement the t-SNE visualizations of
embedded features (Sec. 5.3.3) across 15 corruption types
in the CIFAR-10-C dataset using ResNet-18 and ViT-B/16
models, with the specific results presented in Figs. 8 and 9.

11.4. Detailed Results for Scalability Experiment
In the Scalability experiment (Sec. 5.4.3), we validate our
methods using larger and more complex datasets including
VLCS, DomainNet, and ImageNet-C, as well as on the ViT
backbone, to demonstrate that our approach can robustly
improve performance across diverse datasets and different
backbones.

For VLCS and DomainNet, we employ hyperparameter
selection within the same range as the Domain General-
ization task. However, unlike the Domain Generalization
task, we independently selected hyperparameters for each
domain rather than applying the parameters from the default
domain to others.

For ImageNet-C, we adapt the TTA method to each cor-
ruption type individually. We select hyperparameters opti-
mized for the default corruption type (Gaussian Noise), and
applied these parameters to other corruption types. The de-
tailed results are presented in Tab. 15, Tab. 16 , and Tab. 17
.
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Figure 8. Discriminability visualization of embedded features before and after adaptation via S-FRET and G-FRET, on 15 corruption types
of the CIFAR-10-C dataset using ResNet-18.
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Figure 9. Discriminability visualization of embedded features before and after adaptation via S-FRET and G-FRET, on 15 corruption types
of the CIFAR-10-C dataset using ViT-B/16.



Backbone Method
PACS

Avg
OfficeHome

Avg
A C P S A C P R

ResNet-18

Source [12] 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
BN [36] 80.91 80.80 95.09 73.84 82.66 55.62 49.32 70.60 72.66 62.05
SAR [29] 83.30 82.17 95.09 79.69 85.06 57.15 50.31 70.24 72.34 62.51
EATA [28] 82.71 81.53 94.91 74.19 83.34 56.41 49.62 71.66 72.27 62.49
TENT [49] 82.76 82.68 95.33 78.19 84.74 56.94 50.65 71.86 72.92 63.09
TSD [51] 86.96 86.73 96.41 81.22 87.83 58.06 49.81 71.37 70.67 62.47
TEA [57] 86.47 85.79 95.69 80.81 87.19 58.63 50.56 71.95 72.92 63.52
TIPI [27] 85.50 84.90 96.05 83.13 87.39 57.03 50.61 72.07 73.28 63.25
S-FRET 86.28 86.69 96.35 74.22 85.88 56.20 50.08 71.57 72.64 62.62
G-FRET 86.82 87.03 96.65 81.29 87.95 57.73 51.36 73.10 72.99 63.79

ResNet-50

Source [12] 83.89 81.02 96.17 78.04 84.78 64.85 52.26 75.04 75.88 67.01
BN [36] 85.50 85.62 96.77 72.05 84.99 63.54 52.71 73.89 75.05 66.30
SAR [29] 85.55 85.62 96.77 75.24 85.79 64.77 55.92 75.24 75.81 67.94
EATA [28] 84.67 85.20 96.35 72.36 84.64 63.91 54.04 74.72 75.51 67.05
TENT [49] 88.09 87.33 97.19 79.69 88.07 64.61 54.80 75.06 76.20 67.67
TSD [51] 90.43 89.89 97.84 81.80 89.99 65.27 56.77 76.19 76.41 68.66
TEA [57] 88.09 87.88 97.49 81.39 88.71 66.25 57.50 75.20 76.68 68.91
TIPI [27] 88.18 87.93 97.13 78.80 88.01 64.73 56.24 75.47 77.00 68.36
S-FRET 89.99 89.51 97.84 76.30 88.41 64.15 54.50 75.74 76.25 67.66
G-FRET 90.72 90.15 97.84 82.29 90.25 66.42 57.11 76.21 77.35 69.27

Table 7. At random seed 0, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

Backbone Method
PACS

Avg
OfficeHome

Avg
A C P S A C P R

ResNet-18

Source [12] 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
BN [36] 81.10 80.59 95.33 73.84 82.71 55.83 48.80 70.78 72.21 61.90
SAR [29] 84.33 80.03 95.33 79.59 84.82 56.90 50.22 70.06 72.89 62.52
EATA [28] 82.96 82.47 95.45 73.00 83.47 57.03 50.13 71.03 72.96 62.79
TENT [49] 84.91 81.19 95.57 82.82 86.12 57.77 50.22 72.56 72.62 63.29
TSD [51] 86.62 86.39 95.87 81.50 87.59 57.52 49.26 72.18 71.20 62.54
TEA [57] 87.79 86.60 95.99 82.21 88.15 56.78 50.70 72.02 72.85 63.09
TIPI [27] 85.11 83.23 95.87 85.03 87.31 57.81 50.19 72.56 72.96 63.38
S-FRET 85.84 86.69 95.93 72.84 85.33 56.53 49.51 71.71 72.53 62.57
G-FRET 87.26 86.99 96.59 82.74 88.39 57.23 50.61 73.51 73.17 63.63

ResNet-50

Source [12] 83.89 81.02 96.17 78.04 84.78 64.85 52.26 75.04 75.88 67.01
BN [36] 85.01 85.88 96.65 71.88 84.85 63.00 53.54 73.60 74.96 66.27
SAR [29] 85.01 85.88 96.65 75.92 85.86 65.06 56.31 74.50 76.45 68.08
EATA [28] 85.35 85.41 96.71 72.23 84.92 64.81 53.88 73.80 75.60 67.02
TENT [49] 86.23 86.95 97.01 79.77 87.49 64.81 55.58 74.75 76.38 67.88
TSD [51] 89.75 89.63 97.49 83.76 90.16 65.72 57.14 76.39 76.18 68.86
TEA [57] 89.16 88.05 96.89 82.54 89.16 65.22 57.69 75.67 77.37 68.99
TIPI [27] 87.16 86.99 97.07 80.99 88.05 65.39 56.11 75.69 76.27 68.36
S-FRET 89.36 89.46 97.37 78.57 88.69 64.61 55.28 75.60 76.50 68.00
G-FRET 89.75 89.97 97.49 85.52 90.68 66.17 57.87 76.93 76.80 69.44

Table 8. At random seed 1, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.



Backbone Method
PACS

Avg
OfficeHome

Avg
A C P S A C P R

ResNet-18

Source [12] 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
BN [36] 81.05 80.42 94.97 73.73 82.54 55.71 49.10 70.85 72.55 62.05
SAR [29] 83.69 82.08 94.97 81.01 85.44 57.11 50.70 71.03 72.76 62.90
EATA [28] 80.91 81.06 94.97 72.77 82.43 56.49 49.10 71.95 73.22 62.69
TENT [49] 81.20 83.70 95.51 81.42 85.46 57.19 50.42 71.80 73.08 63.12
TSD [51] 87.06 87.12 95.93 83.07 88.29 57.48 51.11 71.23 70.32 62.54
TEA [57] 87.09 87.97 96.47 81.50 88.26 56.53 50.42 71.91 72.96 62.96
TIPI [27] 82.86 84.04 95.93 84.58 86.85 57.19 50.49 72.00 73.45 63.28
S-FRET 86.28 86.35 95.69 78.34 86.66 56.04 49.46 71.64 72.89 62.51
G-FRET 87.45 87.07 96.35 83.66 88.63 57.23 51.59 72.85 73.84 63.88

ResNet-50

Source [12] 83.89 81.02 96.17 78.04 84.78 64.85 52.26 75.04 75.88 67.01
BN [36] 84.72 85.20 96.59 72.72 84.80 63.33 53.08 73.64 74.82 66.22
SAR [29] 84.72 85.20 96.59 75.18 85.42 64.73 56.93 74.86 76.15 68.17
EATA [28] 85.45 85.11 96.47 72.38 84.85 63.86 54.73 74.00 75.60 67.05
TENT [49] 87.06 85.92 96.65 75.34 86.24 64.32 55.60 74.09 76.02 67.51
TSD [51] 91.85 89.76 97.49 79.92 89.75 64.89 57.46 75.76 76.54 68.66
TEA [57] 88.57 88.27 97.07 80.48 88.60 65.93 57.00 75.96 76.25 68.78
TIPI [27] 87.45 85.41 96.89 77.53 86.82 64.85 56.98 75.02 76.41 68.31
S-FRET 90.77 88.69 97.31 77.07 88.46 64.44 55.40 75.26 76.29 67.85
G-FRET 91.85 89.59 97.54 78.42 89.35 66.05 57.73 76.17 77.25 69.30

Table 9. At random seed 2, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18 and
ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

Backbone Method
PACS

Avg
OfficeHome

Avg
A C P S A C P R

ResNet-18

Source [12] 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
BN [36] 80.96 80.46 95.03 74.12 82.64 55.75 49.67 70.76 72.64 62.20
SAR [29] 83.40 81.02 95.03 81.01 85.11 57.27 50.68 70.80 73.08 62.96
EATA [28] 82.23 80.84 94.97 72.31 82.59 56.32 49.97 71.53 72.57 62.60
TENT [49] 83.15 79.91 95.27 82.08 85.10 57.03 50.77 72.09 73.40 63.32
TSD [51] 86.77 86.52 95.93 83.61 88.21 57.85 49.85 71.37 71.52 62.65
TEA [57] 87.26 86.26 96.59 83.61 88.43 56.70 50.42 71.75 72.69 62.89
TIPI [27] 84.57 83.40 95.57 83.69 86.81 56.94 50.72 72.11 73.26 63.26
S-FRET 86.18 86.35 96.05 75.82 86.10 56.12 50.36 71.68 72.80 62.74
G-FRET 86.87 87.33 95.87 84.07 88.53 57.31 51.64 72.76 73.65 63.84

ResNet-50

Source [12] 83.89 81.02 96.17 78.04 84.78 64.85 52.26 75.04 75.88 67.01
BN [36] 85.16 85.20 96.71 72.18 84.81 63.41 52.88 73.26 75.58 66.28
SAR [29] 85.40 85.20 96.71 76.86 86.04 64.73 56.77 74.75 76.50 68.19
EATA [28] 85.21 85.49 96.41 72.10 84.80 64.15 53.36 74.41 75.42 66.83
TENT [49] 86.18 86.90 96.95 79.97 87.50 64.32 55.51 74.93 76.27 67.76
TSD [51] 90.48 90.32 97.78 81.98 90.14 65.31 56.59 75.74 76.75 68.60
TEA [57] 88.13 86.95 97.07 82.41 88.64 65.27 58.56 76.23 77.39 69.36
TIPI [27] 86.77 87.54 97.07 81.04 88.10 64.65 56.72 75.20 77.09 68.42
S-FRET 89.31 88.95 97.72 78.16 88.54 64.61 55.10 75.38 76.59 67.92
G-FRET 90.82 90.23 97.90 83.46 90.60 65.47 57.34 76.28 77.32 69.10

Table 10. At random seed 3, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18
and ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.



Backbone Method
PACS

Avg
OfficeHome

Avg
A C P S A C P R

ResNet-18

Source [12] 78.37 77.39 95.03 76.58 81.84 56.45 48.02 71.34 72.23 62.01
BN [36] 81.10 81.06 95.27 73.63 82.77 55.38 49.28 70.65 72.39 61.92
SAR [29] 83.40 82.04 95.27 80.91 85.40 58.06 50.79 71.39 72.66 63.23
EATA [28] 81.49 79.65 95.51 74.68 82.83 55.87 49.92 71.34 73.22 62.59
TENT [49] 85.69 83.83 96.05 80.73 86.58 57.31 50.17 72.61 73.42 63.38
TSD [51] 87.84 87.93 95.75 83.41 88.73 58.10 50.22 71.10 70.87 62.57
TEA [57] 86.57 86.05 96.13 82.72 87.87 56.70 50.22 71.57 72.85 62.83
TIPI [27] 85.89 85.62 95.87 83.84 87.80 57.19 50.10 72.40 73.42 63.28
S-FRET 86.67 87.24 95.81 78.29 87.00 56.41 49.90 71.66 72.71 62.67
G-FRET 87.60 87.54 95.93 85.06 89.03 57.97 51.20 72.99 73.38 63.89

ResNet-50

Source [12] 83.89 81.02 96.17 78.04 84.78 64.85 52.26 75.04 75.88 67.01
BN [36] 85.55 85.58 96.29 72.41 84.96 63.21 52.90 73.55 75.07 66.18
SAR [29] 85.55 85.58 96.29 76.89 86.08 64.61 55.56 74.79 75.97 67.73
EATA [28] 85.01 85.58 96.77 72.26 84.90 64.52 54.46 74.30 76.47 67.44
TENT [49] 87.79 86.69 96.83 79.41 87.68 64.61 54.27 74.59 76.11 67.39
TSD [51] 91.65 90.10 97.19 80.33 89.82 65.47 57.00 76.53 76.73 68.93
TEA [57] 88.57 87.59 97.37 80.40 88.48 65.43 57.02 75.92 76.54 68.73
TIPI [27] 88.53 86.99 96.89 79.94 88.09 64.98 56.29 75.20 76.91 68.34
S-FRET 90.09 88.40 97.07 77.14 88.17 64.28 55.03 75.83 76.45 67.90
G-FRET 91.80 90.06 97.19 81.93 90.24 66.50 58.08 76.71 77.23 69.63

Table 11. At random seed 4, the accuracy comparison of different TTA methods on PACS and OfficeHome datasets based on ResNet-18
and ResNet-50 backbones. The best results are highlighted in boldface, and the second ones are underlined.

Method
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] 27.43 33.56 21.57 43.64 40.48 51.26 51.29 68.18 54.52 66.65 87.50 27.59 67.06 48.86 72.37 50.80
BN [36] 66.30 68.18 57.13 82.50 57.44 79.73 81.98 74.83 74.12 78.91 86.96 82.02 70.23 73.43 70.94 73.65
TENT [49] 67.26 71.46 61.21 84.07 61.37 81.66 84.36 78.18 77.55 80.14 88.44 81.41 73.54 78.53 76.19 76.36
EATA [28] 66.39 68.50 57.32 82.52 57.42 79.94 82.09 74.80 74.14 78.90 86.98 81.93 70.10 73.62 70.88 73.70
SAR [29] 66.46 68.24 57.47 82.52 57.83 79.76 81.98 74.83 74.29 78.92 86.96 82.36 70.26 73.43 70.94 73.75
TIPI [27] 67.57 72.14 62.88 84.19 63.55 81.63 84.44 79.06 79.07 79.61 88.68 81.92 75.33 79.92 78.11 77.21
TEA [57] 66.71 69.24 59.46 82.78 59.98 80.87 82.88 76.40 75.60 79.82 86.72 81.48 71.89 74.91 72.91 74.78
TSD [51] 66.97 70.31 60.63 83.24 61.10 81.52 83.97 77.15 76.75 80.08 86.76 80.42 72.66 76.43 73.42 75.43
S-FRET 66.52 69.45 59.40 82.78 59.43 80.64 82.98 76.05 75.73 79.59 86.92 80.68 71.56 75.11 72.61 74.63
G-FRET 67.79 71.83 62.81 84.31 62.63 82.07 84.89 78.91 79.00 81.01 88.87 82.69 74.86 79.47 77.74 77.26

Table 12. Accuracy comparisons of different TTA methods on CIFAR-10-C dataset at damage level of 5, with 15 types of damage applied
sequentially to a continuously adapted model. The best results are highlighted in boldface, and the second ones are underlined.



Method
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] 10.46 12.49 3.36 34.44 23.63 38.10 42.67 39.25 33.01 32.84 55.78 11.55 46.48 34.88 46.15 31.01
BN [36] 39.84 39.51 29.88 56.43 41.08 54.34 58.82 48.52 49.36 46.60 61.82 48.78 49.92 54.17 45.39 48.30
TENT [49] 40.61 41.94 32.09 57.84 44.35 56.57 60.96 51.51 52.03 49.23 63.94 49.62 53.53 57.60 50.03 50.79
EATA [28] 40.59 41.82 32.58 57.97 43.43 56.76 60.33 50.79 51.90 48.71 63.83 49.88 53.96 57.60 50.50 50.71
SAR [29] 40.09 40.67 31.52 57.01 42.16 55.63 59.54 50.53 50.31 47.73 62.50 43.27 51.03 55.49 48.80 49.09
TIPI [27] 40.62 42.29 32.67 57.06 44.84 55.45 59.58 52.19 52.15 46.33 61.91 43.60 52.20 57.39 50.67 49.93
TEA [57] 40.13 39.90 30.82 56.28 41.48 54.73 59.16 48.79 49.31 46.26 61.41 48.48 50.22 54.03 46.63 48.51
TSD [51] 39.84 39.65 30.14 56.63 41.17 54.65 59.03 48.71 49.71 47.25 61.95 48.84 50.65 54.78 46.36 48.62
S-FRET 39.84 39.94 31.10 56.66 42.01 55.19 59.46 48.66 49.21 47.21 61.52 46.80 50.66 53.88 45.75 48.53
G-FRET 41.08 43.23 33.69 57.49 44.07 56.87 61.16 51.24 52.18 49.25 63.12 50.04 54.09 57.42 51.02 51.06

Table 13. Accuracy comparisons of different TTA methods on CIFAR-100-C dataset at damage level of 5, with 15 types of damage applied
sequentially to a continuously adapted model. The best results are highlighted in boldface, and the second ones are underlined.

Method
ImageNet-C

Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

Source [12] 1.54 2.27 1.48 11.44 8.68 11.12 17.62 10.64 16.21 14.02 51.52 3.44 16.49 23.35 30.67 14.70
BN [36] 13.65 14.84 14.17 11.95 13.04 23.34 33.89 29.18 28.42 40.80 58.11 12.09 38.92 44.35 37.08 27.59
TENT [49] 23.45 25.71 24.08 18.79 20.90 33.54 42.85 39.64 32.95 50.36 60.13 10.68 48.81 51.96 46.98 35.39
EATA [28] 28.24 30.16 28.88 25.30 25.74 36.61 43.71 41.80 36.42 50.87 59.12 31.75 49.10 52.33 47.82 39.19
SAR [29] 28.04 29.59 27.88 23.66 23.90 36.16 43.40 40.94 36.71 51.01 60.18 27.38 48.95 52.47 47.98 38.55
TIPI [27] 24.45 26.52 24.75 20.37 22.25 33.65 42.46 39.31 33.47 49.93 59.44 12.53 48.41 51.51 46.92 35.73
TEA [57] 18.82 20.50 19.00 16.27 17.68 28.51 39.17 35.19 32.26 46.92 59.16 15.42 44.39 48.81 43.64 32.38
TSD [51] 15.60 16.99 16.13 15.59 15.41 28.69 38.07 32.92 30.01 45.90 58.69 7.62 41.06 47.47 41.52 30.11
S-FRET 15.04 16.40 15.57 13.77 14.67 25.65 36.00 31.08 29.08 43.13 58.64 12.33 40.37 45.76 39.07 29.10
G-FRET 24.85 27.47 25.49 20.82 22.71 35.10 43.76 40.66 36.68 50.80 60.3 14.20 49.28 52.24 47.52 36.79

Table 14. Accuracy comparisons of different TTA methods on ImageNet-C dataset at damage level of 5, with 15 types of damage applied
independently to the adapted model based on ResNet-18. The best results are highlighted in boldface, and the second ones are underlined.

Method
VLCS

Avg
C L S V

ResNet-18 94.49 60.96 67.73 71.50 73.67
+S-FRET 96.11 59.71 67.28 72.51 73.90
+G-FRET 96.68 64.42 67.82 73.99 75.73

ResNet-50 95.55 60.77 71.12 72.16 74.90
+S-FRET 96.05 57.89 69.86 78.10 75.48
+G-FRET 96.96 58.51 72.27 77.93 76.42

ViT-B/16 97.81 64.38 69.71 73.84 76.44
+S-FRET 97.81 67.32 69.59 73.99 77.18
+G-FRET 98.52 68.00 73.49 74.23 78.56

Table 15. Accuracy on the VLCS dataset with different backbones: ResNet-18/50 and ViT-B/16.



Method
DomainNet

Avg
C I P Q R S

ResNet-18 57.30 16.86 45.03 12.69 56.89 46.00 39.13
+S-FRET 57.69 12.58 44.55 15.18 57.71 47.86 39.26
+G-FRET 58.97 14.10 46.16 15.22 57.42 49.48 40.22

ResNet-50 63.68 20.93 50.35 12.95 62.16 51.42 43.58
+S-FRET 63.95 15.72 50.00 15.23 63.51 53.09 43.59
+G-FRET 64.85 17.61 51.19 14.71 63.33 53.61 44.22

ViT-B/16 71.91 25.56 55.95 18.36 70.66 57.45 49.98
+S-FRET 72.30 27.17 59.45 17.25 71.48 59.65 51.22
+G-FRET 72.63 26.04 58.28 18.92 72.61 60.50 51.50

Table 16. Accuracy on the DomainNet dataset with different backbones: ResNet-18/50 and ViT-B/16.

Method
ImageNet-C

Avg
Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe.

ResNet-18 1.54 2.27 1.48 11.44 8.68 11.12 17.62 10.64 16.21 14.02 51.52 3.44 16.49 23.35 30.67 14.70
+S-FRET 15.04 16.40 15.57 13.77 14.67 25.65 36.00 31.08 29.08 43.13 58.64 12.33 40.37 45.76 39.07 29.10
+G-FRET 24.85 27.47 25.49 20.82 22.71 35.10 43.76 40.66 36.68 50.80 60.30 14.20 49.28 52.24 47.52 36.79

ResNet-50 3.00 3.70 2.64 17.91 9.74 14.71 22.45 16.60 23.06 24.01 59.12 5.38 16.51 20.87 32.63 18.15
+S-FRET 19.26 18.81 19.91 18.66 18.16 29.96 43.32 38.29 34.02 51.74 66.52 16.69 47.22 52.51 44.60 34.65
+G-FRET 29.22 29.13 29.83 25.99 26.68 44.10 50.83 49.15 43.40 58.43 67.35 17.88 57.12 59.68 53.76 42.84

ViT-B/16 35.09 32.16 35.88 31.42 25.31 39.45 31.55 24.47 30.13 54.74 64.48 48.98 34.20 53.17 56.45 39.83
+S-FRET 51.62 53.02 53.54 49.54 50.21 56.68 59.19 61.93 61.22 70.65 72.85 65.43 66.11 67.87 65.61 60.36
+G-FRET 57.56 56.80 58.02 56.86 57.42 62.11 58.98 41.25 59.39 72.69 77.31 70.33 66.61 71.93 70.25 62.50

Table 17. Accuracy on the ImageNet-C dataset with different backbones: ResNet-18/50 and ViT-B/16.
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