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A. Proof of Equation 9

In this section, we provide the detailed of Eq. 9 proposed by Kown et al. [3]. Define ϵ̃θ(xt, t) = ϵθ(xt, t) + ∆ϵt., where
∆ϵt is the the noise part. Define xt−1 as the shifted counterpat of xt−1, where x̃t−1 =

√
ᾱt−1Pt(ϵ̃θ(xt, t)) + Dt(ϵ̃θ(xt, t)).

Then,

x̃t−1 =
√
ᾱt−1Pt(ϵ̃θ(xt, t)) + Dt(ϵ̃θ(xt, t)) (1)

=
√
ᾱt−1

(
xt −

√
1− ᾱt (ϵθ(xt, t) + ∆ϵt)√

ᾱt

)
+

√
1− ᾱt−1 · (ϵθ(xt, t) + ∆ϵt) (2)

=
√
ᾱt−1 Pt(ϵθ(xt, t) + Dt(ϵθ(xt, t))−

√
ᾱt−1

√
1− ᾱt√

ᾱt
·∆ϵt +

√
1− ᾱt−1 ·∆ϵt (3)

= xt−1 +

(
−
√
1− ᾱt√
1− βt

+
√
1− ᾱt−1

)
·∆ϵt (4)

= xt−1 +

−
√
1− ᾱt√
1− βt

+

√
1−

∏t−1
s=1 (1− βs)

√
1− βt

√
1− βt

 ·∆ϵt (5)

= xt−1 +

(√
1− ᾱt − βt −

√
1− ᾱt√

1− βt

)
·∆ϵt ∵ ᾱt =

t∏
s=1

(1− βs) (6)

∴ ∆xt−1 = x̃t−1 − xt−1 =

(√
1− ᾱt − βt −

√
1− ᾱt√

1− βt

)
·∆ϵt (7)

B. Analysis of Norm Variations and Directional Consistency

To compare with adversarial samples, we add random noise zt ∼ N (0, I) to ϵθ(xt, t). Meanwhile, we ensure that the
norm of the random noise zt is consistent with that of the adversarial noise. This process is formalized as shown in Eq. ??.
Here, xr

t denotes the state at step t after adding random noise, and we define ∆xr
t = xr

t − xt. We measure the norms of
∆xt and ∆xr

t throughout the reverse process. Additionally, we compute the cosine similarity St = Cos(∆xt,∆xT−1) and
Sr
t = Cos(∆xr

t ,∆xr
T−1) at each step t.

Specifically, we conducted experiments on the image variation task, randomly selecting 100 distinct samples for evalua-
tion. We adopted DDIM as the reverse process sampler, setting the number of reverse steps to 50 (e.g., 1000, 980, 960, ...,
0). Furthermore, we guarantee that the both processes start from the same init nosie, i.e., xT = xadv

T = xr
T ∼ N (0, I).

This setup ensures that all discrepancies are introduced by the noise predictor. We measured the changes in the norm of ∆xr
t

and ∆xt, i.e., the variations in ||∆xr
t ||2 and ||∆xt||2. As shown in Fig. 1(a), we observe that the changes in ∥∆xt∥2 are

significantly larger than those in ∥∆xr
t∥2, although both exhibit an increasing trend.

In addition, for the similarity calculation, we define T − 1 = 980, since with 50 reverse steps in the DDIM process, the
step after 1000 is 980. We compute the similarity between ∆xt and ∆xr

t for all steps after 980 compared to the 980th step.
Furthermore, for the similarity calculation, we define T −1 = 980, since with 50 reverse steps in the DDIM process, the step
after 1000 is 980. We compute ∆xt and ∆xr

t for all steps after 980, and compare them to the corresponding part of the 980th
step to calculate the similarity. As shown in Fig. 1(b), Sadv

t is significantly larger than Sr
t . Moreover, it can be observed

that even with large step gap, the adversarial samples maintain high similarity, while the random noise similarity decreases
rapidly.
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Figure 1. a)The change of norm throughout the reverse process. We measure the norm of ∆xt and ∆xr
t throughout the reverse process. It

is observed that the norm of ∆xt increases progressively, while ∆xr
t exhibits only minor variations. b) The change of similarity throughout

the reverse process. We measure the similarity metrics Sadv
t and Sr

t during the reverse process. It is observed that Sadv
t remains significantly

higher than Sr
t throughout the entire reverse process, maintaining consistently high values.

C. Adaptive attack

Attack Setting
Image Variation Inpainting(Latent Diffusion Model)

Detection Metrics Image Metrics Detection Metrics Image Metrics
Precision Recall F1 Score IS FID Precision Recall F1 Score IS FID

Clean - - - 12.73 70.2 - - - 22.11 16.2
target 99 100 99 5.54 321.6 95 95 95 15.06 59.5

0.5target + 0.5condition 99 99 99 6.35 293.3 0 0 0 21.71 17.2
condition 99 96 98 6.77 284.6 0 0 0 21.88 16.9

Table 1. The detection and image generation metrics on image variation and image inpainting tasks.

Figure 2. Targeted Image
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Figure 3. The visualization results

We also evaluate our framework against attackers who are aware of our defense mechanism. We attempt to optimize
adversarial samples to resemble the condition image to a certain extent in order to evade our detection. Three attack settings
are designed for comparison and evaluation. We follow the setup of PhotoGuard[5], using their selected target images as the
attack objectives, as illustrated in Fig. 2.

(1)target-only:The first scenario sets the attack target as a specific image, formulated as Eq. 8.

min
δ

∥G(xc + δ)− xs
c∥

s.t. ∥δ∥∞ ≤ η,
(8)

The G(·) represents the generative diffusion models (DMs), encompassing both the denoising and decoding processes. xs
c

denotes the targeted image, and η is a predefined perturbation budget that constrains the magnitude of δ.
(2)0.5target+0.5condition: The second scenario sets the attack loss as a weighted combination, targeting both the speci-

fied image and the conditional image equally. The objective is formulated as Eq. 9.

min
δ

0.5 ∗ ∥G(xc + δ)− xs
c∥+ 0.5 ∗ ∥G(xc + δ)− xc∥

s.t. ∥δ∥∞ ≤ η,
(9)

The xc represents the conditional image, xs
c is the targeted image.

(3)condition-only:The third scenario focuses entirely on the conditional image, as formulated below.

min
δ

∥G(xc + δ)− xc∥

s.t. ∥δ∥∞ ≤ η,
(10)

We evaluate the detection performance of our method using Precision, Recall, and F1 Score. Additionally, we employ two
widely used metrics in generative tasks, Inception Score (IS) and Fréchet Inception Distance (FID), to assess the effectiveness
of the attacks.

Tab. 1 summarizes our experimental results. For the image variation task, we observe that under all three attack set-
tings, the generative quality deteriorates significantly, failing to produce normal outputs. Even in the condition-only set-
ting, where the attack fully targets the conditional image, the generative process is disrupted. Nevertheless, our detection
method maintains high performance, effectively identifying nearly all anomalous samples. For the image inpainting task,
we find that only the target-only attack successfully impacts the generation process. In contrast, attacks under the 0.5tar-
get+0.5condition and condition-only settings seem entirely ineffective, with the generated results closely aligning with the
conditional content. In these cases, where the attack fails and the generated outputs are indistinguishable from clean samples,
our detection method naturally assigns them a detection score of zero.

Fig. 3 illustrates the results of the predicted x0 obtained by reversing clean and adversarial samples three times to te. For
the image variation task, it can be observed that under all attack settings, P adv

t completely deviates from the conditional
image, resulting in outputs that are entirely inconsistent with normal results. For the image inpainting task, attacks under
the 0.5target+0.5condition and condition-only settings are completely ineffective. As shown in the figure, P adv

t closely
resembles Pn

t in these cases, indicating that the attacks have almost no effect.



Overall, our method effectively detects adversarial samples when the attacks are successful. Conversely, when the attacks
are nearly ineffective, the method appropriately refrains from flagging such samples. Detecting a sample as adversarial in
scenarios where the attack has little to no effect is unnecessary.

D. The detail setting of backdoor task.

We validate the effectiveness of our detection method against backdoor attacks. We choose the attack method Invisible
Backdoor proposed by Li et al. [4], which first incorporates triggers into the condition image within the image inpainting
pipeline. Invisible Backdoor generates triggers by feeding the image condition into a trigger generator, which are then added
to the original image for the attack. Additionally, we extended BadDiffusion [1] and VillanDiffusion [2] to image conditional
diffusion models by injecting triggers into the image condition. For Invisible Backdoor, we applied ℓ2-norm constraints on
the generated trigger, selecting values of 8/255 and 16/255 respectively. For BadDiffusion and VillanDiffusion, we selected
two different triggers to place in the lower right corner of the image condition.

We select a mix of 3,000 clean samples and 3,000 backdoor samples for the experiments. For the detection setting, we
specify te = 960 which is an early stage of the reverse process and set k = 3. We use DDIM for the reverse process,
setting the number of DDIM reverse steps to 50. Leveraging the advantage of DDIM’s ability to perform sampling with
skipped steps, we can reach te with only two reverse steps. (e.g., 1000, 980, 960, ...). For the inpainting task, since the
generated content is limited to the masked region, we compute the metrics exclusively within this area. Specifically, we
extract the values of the masked region from the predicted x0, denoted as Pt, and flatten them before proceeding with further
calculations.

Backdoor Configuration

Trigger

Clean

Mask

Poisoned

Grey Box Stop Sign 8/255
Target CAT

8/255
Target HAT

16/255
Target CAT

16/255
Target HAT

Figure 4. For BadDiffusion and VillanDiffusion, we adopted the original settings of BadDiffusion, utilizing two trigger types: Grey Box
and Stop Sign, both placed in the lower-right corner of the image condition. For Invisible Backdoor, triggers were generated using a trigger
generation model that takes the image and mask as input, producing a unique trigger for each image. As per their framework, the generated
triggers were constrained by the ℓ2-norm with bounds of 8/255 and 16/255, respectively.

Meanwhile, Fig. 4 illustrates how we set up the Backdoor. For BadDiffusion and VillanDiffusion, we followed the settings
of BadDiffusion and selected two types of triggers: Grey Box and Stop Sign. The triggers were injected by adding them to
the lower right corner of the image condition. For Invisible Backdoor, triggers were generated by feeding the image and
mask into the trigger generation model, which produces the corresponding trigger for each image. Following their setup, we
constrained the generated triggers using the ℓ2-norm and applied constraints of 8/255 and 16/255, respectively. The figure
also shows that the triggers generated by Invisible Backdoor vary depending on the target. For all experiments, we selected
two targets: HAT and CAT.



E. The detail setting of image variation task.
Similar to the setup for the backdoor task, we select two distinct norm bounds, 8/255 and 16/255. Concurrently, we select
three adversarial attack and 1,000 images for the attack. The model named sd-image-variations-diffusers [6] is the target
model. For each attack method, we combined the 1,000 adversarial samples with 1,000 clean samples for detection. For
the detection setting, we specify te = 800, k = 3 and employ DDIM for the reverse process, setting the number of DDIM
reverse steps to 10(eg. 1000, 900, 800, ...). Under this configuration, we can also achieve te with only two reverse steps. We
set the threshold to 3.9 to distinguish between clean samples and adversarial samples.

F. The detail setting of image inpainting task.
Similar to the setup for the image variation task, we select two distinct norm bounds, 8/255 and 16/255. Concurrently, we
select three adversarial attacks and 1,000 images for the attack. We use two models for the attacks: the Latent Diffusion
Model and the Stable Diffusion Model. For each attack method, we combine the 1,000 adversarial samples with 1,000 clean
samples to evaluate detection performance. For the inpainting task, as the generated content is confined to the masked region,
we restrict metric computation to this area. Specifically, we isolate the pixel values within the mask from the predicted x0:Pt,
and reshape them into a one-dimensional vector for subsequent calculations.
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Figure 5. The visualization results of the clean image condition and image conditions generated by different attacks on two different
models. For each case, we visualize their predicted x0 from three different initial noises, reversed to the specified step te. Compared to
clean samples, adversarial samples exhibit a larger discrepancy with the condition image and demonstrate stronger homogeneity.

Fig. 5 visualizes the predicted x0 for both clean and adversarial samples. It can be observed that, similar to the variation
task, adversarial samples also exhibit both divergence and homogeneity phenomena.

G. The algorithm of Diffusion Anomaly Detection
Algorithm 1 presents the proposed Diffusion Anomaly Detection (DADet) algorithm, which aims to detect adversarial

or backdoor samples in conditional diffusion models. The main steps are as follows:
• Initialization: The condition image xc is duplicated to form the triplet Xc = {xc, xc, xc}, and the initial noise inputs
E = {ε1, ε2, ε3} are sampled from a standard Gaussian distribution. This step ensures input diversity.

• Reverse Process: The reverse diffusion process is performed iteratively. At each timestep, the predicted noise Epred
is obtained using the noise estimator ϵθ, and the noisy sample Xt−1 is computed. At the specified reverse step te, the
predicted denoised image Pte is extracted.

• Feature Representation: The extracted image Pte is flattened into a vector form Pte = {P1
te ,P

2
te , . . . ,P

k
te} for further

analysis.
• Metric Computation:

– Divergence (D): The divergence between Pte and xc is calculated as: D = 1
H×W×C

∑k
i=1(Pi

te − Pxc
)(Pi

te − Pxc
)T

– Homogeneity (H): Cosine similarity is used to measure the consistency among different predicted images: H =∑
1≤i<j≤k

Pi
te

·Pj
te

∥Pi
te

∥∥Pj
te

∥

• Decision Rule: The Diffusion Anomaly Value (DAV) is computed as: DAV = D ·H A threshold F̂ is applied to classify
the sample: if DAV < F̂ then Sample is clean; else Sample is adversarial or backdoor.



Algorithm 1 Diffusion Anomaly Detection(DADet)

Require: Condition image xc, parameter θ, specified reverse step te, the threshold F̂ .
1: The condition image xc is replicated three times to form the set Xc = {xc, xc, xc}.

Meanwhile, the initial noise input set E = {ε1 ε2, ε3} is sampled three times from a standard Gaussian distribution.
2: The reverse process is initialized, and the timesteps for the reverse process are set accordingly.
3: Initialize the Xt = E.
4: # Denoising loop
5: for t in timesteps do
6: # Predict the noise
7: Epred = ϵθ(Xt, Xc, t)
8: # Compute the previous noisy sample Xt− > Xt−1

9: Xt−1 =
√
ᾱt−1(

Xt−
√
1−ᾱtEpred√

ᾱt
) +

√
1− ᾱt−1 − σ2Epred + σ2ϵ

10: if t <= te then
11: # Obtain the predicted x0 corresponding to Xt−1:
12: Pte =

Xt−
√
1−ᾱtEpred√

ᾱt

13: Break
14: end if
15: end for
16: Flatten the Pte and represent in vector form as Pte = {P1

te ,P
2
te , ...,P

k
te},P

i
te ∈ R1×(H∗W∗C).

17: # Measure the divergence between different predicted x0 and xc:
18: D = 1

H∗W∗C
∑k

i=1(Pi
te − Pxc)(Pi

te − Pxc)
T

19: # For the homogeneity, we utilize cosine similarity to assess the similarity between different results:

20: H =
∑

1≤i<j≤k

Pi
te

·Pj
te

∥Pi
te

∥∥Pj
te

∥
21: # Calculate the Diffusion Anomaly Value (DAV) and use it to determine whether the sample is adversarial(backdoor).
22: DAV = D ·H
23: if DAV < F̂ then Sample is clean
24: else Sample is adversarial or backdoor

This framework effectively combines divergence and homogeneity metrics to distinguish clean and anomalous samples within
diffusion models.



H. Ablation of the Number of Reverse times k
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Figure 6. Ablation study on the parameter k across three tasks: Backdoor, Image Variation, and Image Inpainting. The results demonstrate
that increasing k leads to only marginal improvements in the F1 Score.

We conducted ablation experiments on the parameter k across three tasks: Backdoor, Image Variation, and Image Inpainting.
For the Image Inpainting task, we selected the Latent Diffusion Model as the target for the attacks. The experimental results,
as shown in Fig. 6 indicate that as k increases, the F1 Score exhibits only marginal improvement. Based on these findings, we
select k = 3 for all experiments reported in the main text, as it effectively balances detection performance and computational
cost.

I. Visualization of More Results on image variation task.
We visualized additional generation results under different attacks in the image variation task. For clarity, we highlighted the
failed cases of our detection method with red boxes. As shown in Fig. 5, most results exhibit the divergence and homogeneity
phenomena described earlier. The red-boxed samples, marked as failed cases, are due to their relatively weak attack effec-
tiveness. These samples retain a certain degree of similarity to the conditional image while maintaining a reasonable level of
diversity, making them harder to detect.
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Figure 7. Visualization results of image variation task.



J. Visualization of More Results on image inpainting task.
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Figure 8. Visualization results of image inpainting task on latent diffusion model.
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Figure 9. Visualization results of image inpainting task on stable diffusion model.
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