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A. Supplementary Methodology
In this section, we present additional content that is not cov-
ered in detail in the paper to further support the theoretical
framework of the argumentative article.

A.1. IRL-based Teacher Model
Position Embedding. For the temporal feature IA, we ap-
ply temporal positional encoding TE, indexed by its se-
quence length, as described by the following equation.
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For the global position encoding PEA/M , the initial po-
sition post0i is mapped to a higher-dimensional space in the
same manner as Eq. (1), by passing through a linear layer
and activation function to provide a global position prior.
Map Representation. For the map’s feature encoding,
cm ∈ RNL×2 denotes the location point at the indexed
NP /2 position in the subset M ∈ RNL×NP×2 of lane lines.
The vectorized representation vm and deviation dm are cal-
culated using the following formula, while the orientation
θm is obtained by calculating the inverse tangent of vm.
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where j denotes the j-th lane line, i denotes the i-th point,
and M i

j is a 2D coordinate in the lane line object.
Ego Motion Encoder. As described in the main paper,
we obtain IE and PEE by vectorizing and extracting
endpoints from cluster center trajectories. Vectorization,
achieved by solving trajectory differences (similar to the
operation of pti in the Agent Encoder), enables us to ab-
stract the motion behavior of clustered trajectories in mo-
tion space. It is then mapped to the implicit space via Eq. (1)
and further encoded by a learnable network layer to obtain
the implicit embedding IE . For PEE , we use its endpoints
to represent the final target points across different modes

and map them to a unified high-dimensional representation,
similar to positional encoding.
Temporal Decoder. All decoders take as input the con-
catenated Ego and Agent features from the current frame,
denoted as I ∈ R(NE+NA)×1×D, serving as the query.
The corresponding position embedding is represented as
PE ∈ R(NE+NA)×1×D, where NE , NA, and D denote the
number of ego instances, agent instances, and feature di-
mensions, respectively. In this decoder, the sequence length
is represented by the time course, and the spatial-temporal
correlation of each agent over time is captured through the
cross attention mechanism. For temporal features, its multi-
frame information IT ,PET ∈ R(NE+NA)×T×D for each
agent has been obtained through memory bank.

I = Attn(Q(I + PE),K(IT + PET ), V (IT )). (3)

Agent Decoder. In the Agent Decoder, we focus on the
interaction between Ego and Agent to achieve cross-target
feature querying. Therefore, we use the number of targets
(NE + NA) as the sequence length and enable feature in-
teraction through the following self-attention mechanism.

I = Attn(Q(I + PE),K(I + PE), V (I)). (4)

Map Decoder. To better understand the guiding role of
static scenes in the planning process, the map decoder is
designed to interact with the Ego and Agent instances I .
It uses the Map instance IM and the lane center position
embedding PEM as the key and value for the decoder.

I = Attn(Q(I + PE),K(IM + PEM ), V (IM )). (5)

Imitation Learning Loss. The planning model predicts
the trajectory p̂traj directly using the expert trajectory p̄traj
constraints to obtain Lreg. In our setup, the objective is to
learn the displacement between frames, effectively avoiding
the issue of excessive variance in the regression values:

Lreg =

T∑
i=1

∥p̂traj − p̄traj∥. (6)
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Similarly, the predicted self-vehicle status ŝ are con-
strained using the expert driver’s status s̄ (N variables as
acceleration, angular velocity, speed, etc.).

Lstatus =

N∑
i=1

∥ŝ− s̄∥. (7)

The classification loss Lcls leverages expert probabil-
ity distribution supervision, enabling the model to capture
richer information for multi-mode planning. In our setup,
the clustered trajectory closest to the expert trajectory is
assigned the highest confidence (0.8), while the remain-
ing nearest neighbors use soft labels to promote diversity
in model learning, enabling multi-mode planning. Here, the
manually assigned expert probability distribution is denoted
as p̄cls, while the predicted probability is p̂cls, enabling di-
verse planning representations. We then apply KL diver-
gence [2] to effectively supervise the predictive distribution.

Lcls =

ME∑
i=1

p̄cls(i) log

(
p̄cls(i)

p̂cls(i)

)
. (8)

The final imitation learning error is shown below, with
its loss weights following the base setting of SparseDrive
[7], and no further ablation analysis provided.

LIL = 2× Lreg + 3× Lstatus + 0.5× Lcls. (9)

Reward Function. First, the state error est is defined sim-
ilarly to Eq. (7) to measure the difference in state estimates
between the predicted state and the expert trajectory. Sim-
ilarly, the trajectory mean error emean

traj is calculated as in
Eq. (6), while the trajectory start error and end point error
estarttraj , eendtraj are calculated only at specific points to mea-
sure the closeness of the model’s prediction to the expert.

Next, the speed predicted ŝvx is monitored with thresh-
olds to prevent obvious out-of-bounds behavior, as follows.

espeed =

{
1, if 0 < ŝvx < 20,

0. otherwise.
(10)

Additionally, for state predictions ŝ and planning tra-
jectories p̂traj , we evaluate their consistency error to en-
courage the model to establish associations between learned
states and planning as following:

econsist = ŝt1vx ×∆t − p̂t1traj . (11)

Meanwhile, for the collision error ecollision, the pre-
dicted trajectory and the real target are used to compute a
value of 0 for collision and 1 for safety.

Finally, the negative exponent is used as a reward value,
as described in the main text, and reward-weighted summa-
tion is implemented using linearly weighted reinforcement

learning to enhance the reward representation of the scene.

rt =

N∑
i=1

ωie
−xi . (12)

Unlike the experience replay strategy in DQN [6], our
multi-batch setup enables a unified representation across
multiple scenarios. The proposed Target Network Update in
DQN addresses target value fluctuations during training us-
ing a delayed update technique. However, in our setup, the
heterogeneous state values of the inputs to the main and tar-
get networks cause the delayed update policy to fail. There-
fore, we use the actual decision behavior ā for the individu-
ally supervised target network.

LTarget =

ā∑
i=1

∥QT (s̄, āi)− āi∥. (13)

A.2. Motion-Guided Student Model
Generative Encoder. Separate encoders are used to
map expert trajectories and agent instances into Gaussian-
distributed feature spaces. A multi-layer 1D convolution
with ReLU activation is applied to each token to parame-
terize the agent’s target distribution, enabling distribution-
level interaction through fusion and supervision, as de-
scribed in the main text.

A.3. Knowledge Distillation
Adapter. As described in the paper, one set of agent and
map features in the teacher and student models originates
from the vectorized representation of annotation results,
while the other is extracted from image features using de-
formable attention [8] to capture key information. To ad-
dress feature heterogeneity after the decoder, we employ an
adapter ψ for alignment.

ψ = Linear(ReLU(Linear)). (14)

Motion Property Distillation. The categorized kinematic
attribute distillation loss was introduced in the main text;
however, its performance was found to be limited in cer-
tain experiments. To address this, an additional regression-
based attribute distillation loss was incorporated into the
section. Specifically, the strategy is similar to Eq. (6) in
that it uses the trajectory predictions ptcreg from the teacher
model to supervise the student model trajectory pstreg .

LKD
reg =

T∑
i=1

∥pstreg − ptcreg∥. (15)

B. Supplementary Experiments
Here, we provide a complementary account of ablation ex-
periments and visual analyses to illustrate the improvements
in the model’s performance.
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Figure 1. Visualization of probability for target in same scene.

Distillation Generative RL EP ↑ PDMS ↑
✗ ✗ ✗ 78.6 83.5
✓ ✗ ✗ 80.0 85.8
✓ ✓ ✗ 80.3 86.0
✓ ✓ ✓ 80.5 85.5

Table 1. Ablation study on the NAVSIM val dataset.

Agent Temporal Map Avg Collision(%) Avg L2(m) Best Epochs
✓ ✗ ✓ 0.111 1.3915 60
✗ ✓ ✓ 0.107 0.6632 60
✓ ✓ ✓ 0.066 -40% 0.5716 -60% 30

Table 2. Ablation study of the planning decoder in the teacher
model on nuScenes[1] val dataset.

KL Loss Focal Loss Avg Collision(%) Avg L2(m) Best Epochs
✓ ✗ 0.072 0.5497 30
✗ ✓ 0.061 0.5674 20

Table 3. Ablation study of the classification loss in the teacher
model on nuScenes[1] val dataset.

B.1. Ablation Studies

Ablation Study in Closed-Loop Evaluation While the
paper focused on ablation studies with nuScenes, we
have since conducted further experiments on the NAVSIM
dataset [4] to assess the effectiveness of each module. As
shown in Tab. 1, distillation with the teacher model im-
proves EP and PDMS, leading to more diverse and complete
trajectories. The generative model enhances planning by
interacting with the underlying motion distribution. How-
ever, since Transfuser is inherently trained without tempo-
ral modeling and relies on explicit ego status inputs, it con-
flicts with the implicit ego status representation and tempo-
ral learning in RL optimization, resulting in no significant
performance improvement.
Selection of Planning Decoder. To validate the decoders
design, we assess their performance in Tab. 2. As the evalu-
ation mainly focuses on collision and planning, we analyze

LKD
reg LKD

cls LKD
en LKD

de Avg Collision(%) Avg L2(m)
✓ ✗ ✗ ✗ 0.183 0.5901
✓ ✓ ✗ ✗ 0.108 0.5856
✓ ✗ ✓ ✗ 0.096 0.5918
✓ ✗ ✗ ✓ 0.091 0.5842

Table 4. Ablation Study of the regression distillation on the student
model on nuScenes val dataset.

the Map Decoder and further compare the roles and inter-
actions of the Temporal and Agent Decoders. Introducing
the Agent Decoder enables basic interaction and planning,
though with some performance fluctuations. Replacing it
with the Temporal Decoder for sequential agents signifi-
cantly enhances planning, especially by reducing L2 error.
Using both decoders together enhances planning by balanc-
ing agent interactions and temporal information. This ap-
proach reduces collision rates and L2 error while improving
training efficiency, requiring half the epochs.
Effect of Classification Target. In SparseDrive [7], focal
loss [5] is employed for supervised classification between
dissimilar modalities. However, it relies solely on unique
labels for supervision, lacking the capability for diverse im-
itation learning. As introduced in Eq. (8), we use KL di-
vergence for supervision, so here we perform a simple per-
formance analysis of the two categorical loss. As shown
in Table Tab. 3, the two models exhibit comparable perfor-
mance. However, the model with the KL Loss constraint
demonstrates superior performance in terms of L2 metrics,
while the model with the Focal Loss constraint achieves a
lower collision rate. Distributions supervised by KL diver-
gence exhibit more diverse probabilities in the scene, influ-
enced by the number of TopKs, while label-supervised dis-
tributions have relatively uniform probabilities as show in
Fig. 1. Therefore, we prefer the KL divergence-constrained
classification layer for diversity.
Ablation Study of Regression Distillation. In the main
text, we analyze classification distillation as less effective
for practical motion planning due to its focus on category
differences. Therefore, in Tab. 4, we additionally provide
the effect of regression distillation, which can be found to
have a negative effect on collisions when used alone, lead-
ing to regression head learning disorientation. While com-
bining it with other distillation methods provides some mit-
igation, the overall performance remains inferior to multi-
mode instance learning, which avoids the representation
space gap between across heads.
Qualitative Visualization on NAVSIM Dataset. In Fig. 2,
we present additional scenarios from the NAVSIM dataset
to illustrate the results. In case (a), the Transfuser [3] strug-
gles to complete a left turn, whereas DistillDrive success-
fully assists the model in navigating the turn according to
the prescribed curvature. Similarly, DistillDrive effectively
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Figure 2. Qualitative visualization of the planning performance on
the NAVSIM [4] navtest split,follow the logic of the paper.

Transfuser
DistillDrive (ours)
GT Trajectory

Figure 3. Qualitative visualisation on the CARLA dataset. Dis-
tillDrive aligns better with driving demonstrations in turns, making
it safer than TransFuser with lower collision rate.

addresses the right-turn deactivated issue of Transfuser, as
shown in Fig. 2 (b). In the turn-to-straight scenario (c),
Transfuser fails to efficiently adjust the yaw, whereas our
proposed DistillDrive successfully outputs a planned path
that aligns with the lane line as expected.
Qualitative Visualization on CARLA Dataset. To bet-
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Figure 4. Visualization of loss weight impact on performance.

ter evaluate the model’s performance in closed-loop set-
tings, we provide qualitative comparisons in Fig. 3, which
show that DistillDrive enhances safety in turns and inter-
active scenarios through multi-mode distillation and rein-
forcement learning optimization.
Ablation Study of Hyperparameters We have experi-
mented with the hyperparameter ζ of the distributional gen-
erative model, and its impact on the model is not significant.
As for the decaying sparse γ of the reward function in re-
inforcement learning, we did not do additional experiments
and set it to 0.95 by default. The impact of the loss weight
λ1, λ2, λ3 on the model performance is analyzed in Fig. 4.
The model achieves optimal performance when λ2 and λ3
are to 1, and λ1 is set to 0.5. Conversely, performance dete-
riorates significantly when both reinforcement learning and
generative models fail, which occurs when λ2 and λ3 are set
to 0. At the same time, the choice of these two parameters
(λ2 and λ3) has minimal impact on the model performance.
Instead, the multi-mode instance imitation is primarily con-
trolled by the distillation loss weight λ1.
Effect Analysis of Knowledge Distillation. To effectively
verify the reasonableness of knowledge distillation, we first
visualize our teacher model and SparseDrive in Fig. 5. We
observe that SparseDrive frequently encounters issues when
turning, often leading to collisions with the road edge. In
contrast, our designed teacher model effectively avoids such
situations, further demonstrating its superior ability to per-
ceive lane line information. Moreover, the designed diverse
end-to-end imitation learning model not only captures the
distributional representation of multi-modal motion features
but also surpasses the teacher model in collision perfor-
mance in certain cases, as shown in Fig. 6 (a, b).
Qualitative Visualization on nuScenes Dataset. In Fig. 7,
we visualize DistillDrive’s overall performance on the
nuScenes dataset, covering both perception and planning.
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Figure 5. Qualitative visualization comparing the performance of the teacher model and the end-to-end model SparseDrive, verifying their
differences in performance before knowledge distillation.
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(b) Richer modes for turn planning

(a) Effective collision avoidance

Figure 6. Qualitative visualization of performance for the teacher model and our proposed end-to-end model DistillDrive.



Figure 7. Qualitative visualization of DistillDrive’s overall performance on the nuScenes val dataset.
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