From Easy to Hard: Progressive Active Learning Framework for Infrared Small
Target Detection with Single Point Supervision
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Figure 1. Label evolution results of MSDA-Net equipped with the LESPS framework on the NUDT-SIRST dataset. As the number of
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epochs increases, the labelled area expands excessively and does not shrink, which will affect the final detection performance.

In this supplementary material, we offer extra details
and additional results to complement the main paper. In
Sec. A, we provide a presentation and analysis of the risk
of excessive label evolution in the LESPS framework. In
Sec. B, we provide a detailed introduction to the used edge-
enhanced difficulty-mining (EEDM) loss. In Sec. C, we
provide a more detailed explanation on why “from easy
to hard” fits this task and more visualizations. In Sec. D,
we provide a detailed performance comparison with other
methods (MCLC [1], LELCM [2]). In Sec. E, we provide
more ablation experiments to fully explore the performance
of our proposed Progressive Active Learning (PAL) frame-
work. In Sec. F, we provide more quantitative comparative
experiments on different datasets. In Sec. G, we provide
more qualitative results to further verify the superiority of
the proposed PAL framework.

A. Excessive Label Evolution in the LESPS

In exploring the LESPS framework [3], we find that it has
the risk of excessive label evolution. From Fig. |, when us-

ing the LESPS framework, if the pseudo-label has an overly
large annotation of the target area during evolution, the area
will not shrink, but will either remain the same or expand
further. The reason is that the label evolution rule does not
consider the shrinkage problem of the target annotation in
the pseudo-label after it is too large. The LESPS frame-
work is designed to generate reasonable candidate regions
using an adaptive threshold rule, which effectively avoids
cumulative errors. However, it can only prevent the con-
tinued large-scale expansion and cannot prevent the initial
occurrence of errors. At the same time, it ignores the fact
that the calculation of the adaptive threshold is based on
the target area in the pseudo-label rather than the prediction
result of the current iteration. Therefore, when the target
annotation of the pseudo-label is small and the annotation
of the current prediction result is too large, there is a risk
of over-expansion in the target annotation of the updated
pseudo-label. Since there is no design for shrinking the an-
notation area in its pseudo-label update strategy, an overly
expanded annotation area cannot be shrunk. Therefore, to



Table 1. Performance comparison of the PAL and MCLC on the
SIRST3 dataset with coarse point.

SIRST3-Test SIRST3-Test
Net | Method | m T, T 7, | et (Method o 0T By |

ACM MCLC |48.17|49.94 |85.45|110.30 DNA MCLC |54.57|59.94 87.04|102.87
PAL |51.51|54.07 |92.89| 39.18 PAL |67.20|70.20 96.15| 10.86

ALC MCLC |51.05|53.14 [82.99| 85.10 GGL MCLC |55.54|61.96 88.24|129.56
PAL |57.11|60.22 93.95| 37.20 PAL |68.52|71.69 97.14| 16.69

MLCL MCLC |52.26| 58.06 |89.57|136.18 UIu MCLC |54.56|62.21 87.97|164.06
PAL |64.87|69.40 |94.95| 24.43 PAL |69.05|71.53 96.81| 15.45

MCLC |53.82|58.69 |86.38|109.44 MCLC |54.71|60.89 88.90|132.39
ALCL PAL |66.29|68.18 |94.75| 18.79 MSDA PAL |69.38|71.55 97.41| 16.34

Table 2. Performance comparison of the PAL and MCLC on the
SIRST3 dataset with centroid point.

SIRST3-Test SIRST3-Test
Net |Method Net |Method
e T U TnloU | Py | Fa VT TaloU | Py | Fa

ACM MCLC |47.87|49.57|85.51|133.21 DNA MCLC |55.92|62.53 87.97|110.28
PAL |51.51|53.73 |92.82| 35.98 PAL |66.97|70.63 96.28 | 14.66

ALC MCLC |49.8252.85 |85.65|105.89 GGL MCLC |55.82|62.04 87.91|107.26
PAL |55.01|57.93|93.94| 31.63 PAL |67.83|70.27 95.68| 16.28

MLCL MCLC |53.83]59.31 |88.04| 99.71 UIU MCLC |55.97|62.49 87.71|117.33
PAL |66.38|69.25 95.08| 15.94 PAL |69.05|70.01 95.68| 21.10

MCLC |54.31|60.35 |88.24|125.57 MCLC |56.00|62.09 90.90| 93.61
ALCL PAL |65.99|70.59 |95.22| 20.81 MSDA PAL |69.21|72.40 97.01| 15.70

Table 3. Performance comparison of the PAL and LELCM on
three individual datasets with coarse point.

NUAA-SIRST NUDT-SIRST IRSTD-1K
IoU | Py | F, |IoU | Py | F, |IoU | Py | F,
LELCM | 52.11|91.61|51.36 | 50.35|89.27 | 46.64 | 50.02 | 87.33 | 19.96

PAL ]62.25|91.25|34.99|74.89|98.62 7.10 |61.70|92.57|21.60
LELCM | 53.98 | 88.39 | 36.67 | 56.56 91.96‘23.31 58.04 | 87.78 | 24.36

PAL |66.57|90.49 |27.44|73.29 |98.10 22.08 | 58.40|91.25|24.52

Net | Method

UIU
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Table 4. Performance comparison of the PAL and LELCM on
three individual datasets with centroid point.

NUAA-SIRST NUDT-SIRST IRSTD-1K
IoU | P; | F, |1oU | Py | F. |IoU | Py | F,
LELCM | 53.21 | 89.24 | 59.68 | 54.84[90.27 | 59.21 | 50.68 | 90.47 | 43.92

PAL |66.43(96.20 |14.54|74.58|98.20 4.67 |61.30|91.25|36.61
LELCM | 58.71]92.26 | 38.49|58.30 | 89.46 | 22.43 | 55.23| 87.15 | 22.67

PAL |66.16|91.63|24.42|73.24|197.99 9.10 |59.53 | 88.89|20.14

Net | Method

UIU

DNA

reduce the risk, we introduce a decay factor, which helps
achieve a dynamic balance between the expansion and con-
traction of target annotations.

B. The EEDM Loss

For the SIRST detection task, the lack of intrinsic features
makes it difficult to accurately locate the target area [4,
6]. Therefore, we introduce an edge-enhanced difficulty-
mining (EEDM) loss [5] to constrain the network optimiza-
tion. The EEDM loss consists of two parts: edge pixel en-
hancement and difficult pixel mining. Taking a single image
as an example, firstly, we obtain the target edge contour in
the binary pseudo-label. Secondly, the binary cross-entropy
loss is used to obtain the loss value of each pixel and form a
loss matrix. Finally, we weight the edge contours extracted
from the labels and apply this weighting matrix to the calcu-
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Figure 2. Training pool sample count on the SIRST3 dataset every
40 epochs. Left: coarse point. Right: centroid point.
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Figure 3. Pseudo-label evolution results of MSDA-Net equipped
with the PAL framework on the SIRST3 dataset.
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lated loss matrix to obtain the loss value of each point after
edge weighting. The expressions are as follows:

Lij = Wij(—(Tijlog(P;y) + (1 — Ti;) log(1 — P;)))
(D)
Wij = a- Ejj + (1 - Ey) ()

where E;; denotes the edge extracted from the binary
pseudo-label, edge pixels are marked as 1 and non-edge
pixels are marked as 0. P;; denotes the prediction result.
T denotes the pseudo-label after binarization. « is the edge
weighting coefficient, which is set to 4 [5].

Subsequently, difficult pixel mining is performed.
Firstly, the loss values of each point are sorted. Secondly,
the set of loss values that are greater than or equal to the
median is obtained. Finally, the final loss is obtained by cal-
culating the mean loss of difficult pixels. The expressions
are as follows:

1
Legpm = B Z L;; 3)
(i,5€9)
S = {(i,§)|Lij > median(Ly;)} (4)

where Lgppas is the output, S is the difficult pixel set.

On the one hand, EEDM loss promotes the network to
increase its sensitivity to target edges by using edge infor-
mation as an additional constraint. On the other hand, it
uses difficult pixel mining to help the model better focus
on difficult-to-detect target areas, thereby preventing small
targets from being submerged by the background.

C. Why “From Easy to Hard” Fits this Task?

For this task, the target regions are usually very small and
low-contrast, which makes them highly sensitive to pseudo-



Table 5. Batch size investigation on the SIRST3 dataset. Coarse
denotes coarse point supervision. Centroid denotes centroid point
supervision.

Batch | MSDA-Net Coarse + PAL | MSDA-Net Centroid + PAL
size | IoU nloU P, F, | IoU nloU Py F,
40 [67.33 70.90 96.41 20.27|67.31 70.18 96.48 28.77
32 |68.03 71.30 97.28 18.67|68.43 71.60 96.08 14.89
24 |70.31 71.53 95.15 13.78|69.16 71.98 95.55 7.82
16 |69.38 71.55 97.41 16.34|69.21 72.40 97.01 15.70
8 168.60 71.12 96.61 24.20|68.83 71.84 96.48 14.88

Table 6. Update period investigation on the SIRST3 dataset.
Coarse denotes coarse point supervision. Centroid denotes cen-
troid point supervision.

Update | MSDA-Net Coarse + PAL | MSDA-Net Centroid + PAL

period | ToU nloU P, F, | IoU nIoU P, F,
1 66.35 68.21 95.88 29.37|64.61 47.27 82.66 41.45
3 70.01 70.65 96.68 20.18|69.65 71.51 97.41 13.62
5 69.38 71.55 97.41 16.34|69.21 72.40 97.01 15.70
7 69.04 71.79 96.88 15.06|68.53 72.11 97.01 22.07
10 [68.57 71.80 97.08 14.38|68.33 71.16 96.94 26.89

Table 7. Learning rate investigation on the SIRST3 dataset.
Coarse denotes coarse point supervision. Centroid denotes cen-
troid point supervision.

Learning | MSDA-Net Coarse + PAL | MSDA-Net Centroid + PAL
rate IoU nloU Py F, | IoU nloU Py F,
le? - - - - - - - -

5¢3  [69.53 71.69 97.81 17.13]68.61 70.21 96.88 19.81

led  |69.38 71.55 97.41 16.34|69.21 72.40 97.01 15.70

5e*  168.83 70.71 95.88 16.23(69.24 72.34 96.35 23.05

le* 6531 70.87 94.88 16.94|65.41 70.09 95.02 18.07

5¢”  [59.68 65.70 92.09 19.38|61.64 67.33 94.49 19.14

Table 8. Missed detection rate threshold investigation on the
SIRST3 dataset. Coarse denotes coarse point supervision. Cen-
troid denotes centroid point supervision.

T MSDA-Net Coarse + PAL | MSDA-Net Centroid + PAL
mws 'ToU nloU P; F, | IoU nloU Py F,
Change | 69.38 71.55 97.41 16.34|69.21 72.40 97.01 15.70
0.2 169.30 71.69 96.88 19.05|69.07 70.89 97.54 16.32
0.4 169.14 71.14 96.21 14.00|69.06 71.38 96.94 16.52
0.6 [68.73 71.61 96.61 15.82|6891 71.41 96.41 17.69
0.8 [67.41 71.06 96.08 15.61|68.42 71.14 96.08 15.64

label noise. This challenge is further exacerbated with sin-
gle point supervision, as sparse annotations provide little
spatial guidance. Training directly on unreliable pseudo-
labels not only leads to degraded performance but also
causes semantic drift due to misleading supervision. The
“from easy to hard” idea can alleviate this problem, so we
systematically introduce it into the SIRST detection with
single point supervision for the first time and build a Pro-
gressive Active Learning (PAL) framework. Fig. 2 and
Fig. 3 show that our PAL can gradually introduce harder

samples and generate more refined pseudo-labels. The
adaptive modifications to the characteristics of this task are
mainly reflected in the easy-sample pseudo-label generation
(EPG) strategy and fine dual-update strategy. The former
automatically screens “easy samples” based on target char-
acteristics through local brightness and edge information.
The latter combines point labels with model feedback to
regulate sample introduction and label evolution.

D. Compared with Other Methods

To further verify the performance of the proposed PAL
framework, this section further presents the performance
comparison with other methods. On the one hand, we
compare with the MCLC (Monte Carlo Linear Cluster-
ing) method [1], which is a static pseudo-label generation
method. On the other hand, we compare with the LELCM
(Label Evolution framework based on Local Contrast Mea-
sure) method [2], which is a dynamic pseudo-label evo-
lution method. Notably, the MCLC will additionally use
the area information of the true target area to classify the
target type (“Point”, “Spot”, “Extended”) when generating
pseudo-labels. However, the task setting of this study is that
the training set only has point labels. To make a fair com-
parison and ensure that MCLC can cover all targets in the
selected area, all targets in the MCLC experiment are as-
signed the “Extended” type. In addition, since the code of
LELCM is not available, we directly use the results in the
paper for comparison.

Comparison with the the MCLC method. To fully com-
pare the performance of PAL and MCLC, we conduct com-
parative experiments on the SIRST3 dataset with different
point labels and multiple networks. From Tab. 1, com-
pared with MCLC, using our proposed PAL improves the
IoU by 3.34%-14.67% and the Py by 5.38%-10.96% on the
SIRST3 dataset with coarse point. From Tab. 2, compared
with MCLC, using our proposed PAL improves the IoU by
3.64%-13.21% and the P, by 6.11%-8.31% on the SIRST3
dataset with centroid point. In summary, compared with
MCLC, our PAL framework has significantly better perfor-
mance.

Comparison with the the LELCM method. We further
compare the performance of PAL and LELCM on three in-
dividual datasets with different point labels. The experi-
mental results are shown in Tab. 3 and Tab. 4. From the
results on three individual datasets with coarse point, com-
pared with LELCM, using the proposed PAL improves the
IoU by an average of 12.67% and the P; by an average of
4.32%. From the results on three individual datasets with
centroid point, compared with LELCM, using the proposed
PAL improves the IoU by an average of 11.71% and the
P, by an average of 4.22%. In summary, compared with
LELCM, our PAL framework has significantly better per-
formance.



Table 9. IoU (%), nIoU (%), Pg (%) and F, (10’6) values of different methods achieved on the SIRST3 dataset with centroid point labels.
NUAA-SIRST-Test, NUDT-SIRST-Test and IRSTD-1K-Test denote the decompositions of SIRST3-Test to verify the robustness of the model.
DLN Centroid denotes DLN-based methods under centroid point supervision.

Scheme Description SIRST3-Test NUAA-SIRST-Test NUDT-SIRST-Test IRSTD-1K-Test
IoU nloU Py F, | IoU nloU Py F, | IoU nloU Py F, | IoU nloU Py F,
DLN Full 64.93 64.89 94.88 20.97|67.61 67.57 92.02 10.36|65.77 65.65 95.87 15.95|61.92 59.55 94.28 28.07
ACM DLN Centroid + LESPS | 38.38 36.39 91.16 60.84 |42.25 40.72 88.97 46.79|36.50 34.12 92.06 53.77|40.49 39.27 90.24 70.56
DLN Centroid + PAL (Ours) [ 51.51 53.73 92.82 35.98 |57.87 58.00 88.59 28.40 |54.73 54.76 94.50 21.79|42.51 45.79 91.25 49.80
DLN Full 65.69 66.68 95.02 34.60|70.33 69.49 94.68 13.72]66.64 68.32 95.56 25.65|61.60 58.28 93.60 47.77
ALCNet DLN Centroid + LESPS | 46.48 43.82 89.44 38.72|52.27 50.36 89.73 36.84|44.62 41.32 89.10 25.53|47.19 45.11 90.24 50.14
DLN Centroid + PAL (Ours) | 55.01 57.93 93.94 31.63|62.51 64.42 90.87 28.74|58.43 58.46 94.71 23.81|44.78 49.29 91.92 38.89
DLN Full 78.44 82.01 95.22 17.99|71.28 74.38 91.25 34.57|89.36 90.11 97.14 13.44|63.25 63.38 92.59 17.16
MLCL-Net | DLN Centroid+ LESPS | 37.28 36.95 90.90 45.13 40.29 40.51 89.73 49.39|35.25 35.08 92.06 43.36|40.72 39.34 88.22 45.42
DLN Centroid + PAL (Ours) | 66.38 69.25 95.08 15.94 |67.25 69.70 93.16 20.99 |71.73 72.44 97.25 8.80 |54.89 58.24 89.90 20.44
DLN Full 79.38 81.09 96.08 18.64|72.79 75.36 93.54 20.92|87.68 88.21 97.57 13.03|68.36 63.66 93.60 22.64
ALCL-Net | DLN Centroid + LESPS | 55.63 54.13 94.15 26.2959.99 60.30 93.92 20.79|56.03 52.49 94.92 13.67|52.17 52.95 91.92 38.24
DLN Centroid + PAL (Ours) [ 65.99 70.59 95.22 20.81|68.27 72.76 95.06 29.57 |72.07 73.55 96.93 13.10|52.90 58.48 89.90 24.75
DLN Full 81.96 85.90 97.54 9.11 |78.06 80.50 97.72 15.71|92.70 93.37 99.05 5.77 |64.80 66.94 92.59 10.04
DNANet DLN Centroid + LESPS | 55.24 61.30 90.37 19.48|57.61 63.93 91.63 6.86 |60.91 63.64 91.85 33.62|41.78 50.74 84.51 11.29
DLN Centroid + PAL (Ours) | 66.97 70.63 96.28 14.66 |71.01 73.33 96.96 23.05|71.79 73.67 98.94 13.35|53.83 57.71 87.21 13.42
DLN Full 82.06 85.34 97.74 12.76|78.40 79.99 96.96 20.72|92.07 92.34 99.26 4.87 [66.68 67.88 93.60 17.08
GGL-Net DLN Centroid + LESPS | 56.66 54.79 93.55 24.41|60.06 60.45 92.02 12.14|56.34 53.24 94.92 26.52|55.39 53.89 90.57 26.06
DLN Centroid + PAL (Ours) | 67.83 70.27 95.68 16.28 |72.47 73.63 95.82 26.34|70.99 72.72 98.20 13.51|58.30 58.59 87.54 15.79
DLN Full 83.14 85.29 97.34 15.44|76.64 78.43 95.82 12.69|92.94 93.29 98.41 4.11 |70.04 66.19 9529 25.55
UIUNet DLN Coarse + LESPS 49.63 48.07 88.97 54.56|57.54 57.12 86.31 59.20|47.88 45.28 90.05 27.97 4891 47.65 87.88 75.23
DLN Coarse + PAL (Ours) |69.05 70.01 95.68 21.10|70.71 72.12 91.63 23.39|70.63 72.17 96.93 4.78 |65.11 60.67 95.29 33.95
DLN Full 83.46 8597 97.41 17.15|74.81 78.61 95.06 30.94|93.62 94.03 99.26 9.67 [70.98 67.16 93.60 19.51
MSDA-Net| DLN Centroid + LESPS |53.57 50.34 92.43 29.05|56.98 56.00 90.87 13.24 |51.72 48.17 94.18 20.27|55.94 51.48 88.22 40.67
DLN Centroid + PAL (Ours) | 69.21 72.40 97.01 15.70|70.60 72.69 96.20 26.55|74.17 75.61 98.20 9.81 |58.63 61.47 93.94 17.61

E. More Ablation Experiments

In this section, we study more influencing factors in de-
tail, including the batch size, update period of the refined
dual-update strategy, learning rate, and missed detection
rate threshold.

1) Batch size. To explore the impact of batch size on
the performance of the final generated model, we explore
the PAL framework with different batch size settings. From
Tab. 5, when the batch size is set too large or too small,
the final generated model will experience a slight perfor-
mance degradation. Specifically, when the batch size is set
too large, the number of model updates will be reduced and
each update will be based on a large number of samples,
making the gradient update smoother and reducing the ran-
domness of the model, which makes the model more likely
to overfit on the training data. When the batch size is set too
small, each gradient update is based only on a small number
of data samples, resulting in a large variance in the gradi-
ent estimate and large fluctuations in the gradient direction,
which makes it easy to fall into a local optimum. On the
whole, the final model with different batch size settings has
relatively stable results, which verifies the stability of the
proposed PAL framework. Based on the results in Tab. 5,
the batch size is uniformly set to 16 in the experiments.

2) Update period of the refined dual-update strategy. To

explore the impact of the update period of the refined dual-
update strategy on the performance of the final generated
model, we explore the PAL framework with different up-
date period settings. The experimental results are shown in
Tab. 6. Except that the update period is set to 1, the other
settings have relatively stable results, which illustrates the
robustness of the proposed PAL framework. The significant
decrease in performance when the update period is set to 1
is because hard samples need to be trained for appropriate
epochs after entering the training pool so that the model can
fully learn the newly entered hard samples. It is just like
when students face difficult content, they need to spend a
certain amount of time to recognize, understand and apply
it flexibly. If the time given is too short, students will not be
able to deeply understand the knowledge, which will lead
to a certain degree of knowledge confusion. In addition, the
smaller the update period is set, the more time it takes to
train. In the experiments, the update period is set to 5.

3) Learning rate. To explore the impact of the learning
rate on the performance of the final generative model, we
explore the PAL framework with different learning rate set-
tings. As shown in Tab. 7, the results are consistent with
the relationship between the learning rate settings and per-
formance changes in general deep learning networks. When
the learning rate is set too high (1e2), the update step size of



Table 10. IoU (%), nloU (%), Pi (%) and F, (10'6) values of different methods achieved on the separate NUAA-SIRST, NUDT-SIRST,
and IRSTD-1k datasets with centroid point labels. (213:214), (663:664) and (800:201) denote the division of training samples and test
samples. DLN Centroid denotes DLN-based methods under centroid point supervision.

Scheme Description NUAA-SIRST (213:214) NUDT-SIRST (663:664) IRSTD-1K (800:201)

IoU nloU P, F, IoU nloU P, F, IoU nloU P, F,
ACM DLN Full 65.67 63.74 90.11 24.01 | 6533 65.12 9587 1292 | 6045 53.70 9226 46.06
ALCNet DLN Full 66.41 65.18 91.63 3526 | 69.74 70.67 9746 11.15 | 6247 5525 88.89 36.79
DLN Full 74.68 76.50 9582 28.74 | 94.03 9397 98.73 7.72 | 6486 63.35 91.25 23.23
MLCL-Net DLN Centroid + LESPS 32.69 3259 82.89 20.85 | 34.11 32.00 89.52 46.17 | 46.59 45.16 86.87 29.42
DLN Centroid + PAL (Ours) | 67.64 70.28 93.92 4500 | 72.67 73.87 9831 7.79 | 59.14 59.21 91.25 25.79
DLN Full 7222 72.64 94.68 35.06 | 92.80 93.01 99.05 2.21 65.56 65.03 91.58 9.68
ALCL-Net DLN Centroid + LESPS 35.56 3299 92.02 3245 | 46.08 43.19 86.88 41.00 | 45.77 42.80 86.53 20.46
DLN Centroid + PAL (Ours) | 65.10 66.41 93.16 44.11 | 71.55 72.55 97.25 9.81 | 59.82 5392 87.54 2238
DLN Full 76.40 7832 9620 20.72 | 95.17 95.19 98.94 2.00 | 69.06 6522 91.58 11.56
DNANet DLN Centroid + LESPS 16.89 19.50 61.98 45.14 | 39.39 4553 86.14 291.02 | 50.14 49.95 87.54 16.13
DLN Centroid + PAL (Ours) | 66.16 66.68 91.63 24.42 | 73.24 7441 9799 9.10 | 59.53 57.62 88.89 20.14
DLN Full 75.47 7593 9734 20.65 | 94.86 94.93 99.47 1.03 | 69.09 6552 92.59 13.68
GGL-Net DLN Centroid + LESPS 5485 53.82 9049 21.20 | 4823 46.86 89.95 50.23 | 48.82 42.67 81.48 19.66
DLN Centroid + PAL (Ours) | 64.79 65.05 94.68 20.51 | 73.42 74.71 98.41 5.68 | 61.73 5495 8249 21.22
DLN Full 78.02 76.85 96.58 14.68 | 95.07 95.10 98.73 0.21 7094 6432 9125 10.57
UIUNet DLN Centroid + LESPS 26.05 2527 5475 37.52 | 41.60 3943 8593 68.23 | 41.40 4042 87.88 84.93
DLN Centroid + PAL (Ours) | 66.43 69.49 96.20 14.54 | 74.58 7543 9820 4.67 | 61.30 55.37 91.25 36.61
DLN Full 76.73 7778 9620 21.75 | 9527 95.18 99.15 1.72 | 7098 65.70 93.94 33.95
MSDA-Net DLN Centroid + LESPS 48.63 48.70 87.45 37.59 | 3290 30.59 8392 11297 | 48.67 4641 85.86 26.72
DLN Centroid + PAL (Ours) | 64.56 66.42 91.25 32.04 | 7345 74.65 98.52 11.84 | 65.33 60.18 92.93 23.50

the model will become larger, resulting in unstable param-
eter updates during training, which in turn leads to train-
ing collapse. When the learning rate is set too low (5¢7),
the update step size of the model becomes smaller, which
leads to slow network optimization and easy to fall into lo-
cal optimality. In addition, when the learning rate is set to
5e” — 5e3, the results of the final generated model are sta-
ble. This verifies the robustness of the proposed PAL frame-
work. In the experiment, we set the learning rate uniformly
to le.

4) Missed detection rate threshold. During this research,
we discover an interesting phenomenon: there are few false
detections in the detection results of single-frame infrared
small target (SIRST) based on DLNs. This can also be
found from the order of magnitude (1e®) of the F,. At
the same time, the falsely detected areas will be eliminated
in the coarse outer updates. Therefore, we focus on explor-
ing the threshold of the missed detection rate in the model
enhancement phase. To further explore the impact of the
missed detection rate threshold setting in the coarse outer
updates on the performance of the final generated model,
we explore the PAL framework with different missed de-
tection rate threshold settings. The experimental results are
shown in Tab. 8. Compared with using a fixed missed de-
tection rate threshold, using a variable value has relatively
better detection results. At the same time, when the missed
detection rate threshold is set larger and larger, the final
performance gradually decrease. A larger threshold setting

means that more harder samples will enter the training pool
for training in the early of the model enhancement phase.
Combined with the final results, it shows that hard sam-
ples should be input reasonably and gradually from simple
to difficult in the model enhancement phase. This further
verifies the effectiveness of our proposed progressive active
learning idea. For the missed detection rate threshold, we
set its initial threshold to 0.2 and gradually increase it to 1
as the number of epochs increases in the experiment.

F. More Quantitative Results

Considering that the main papers only conduct experiments
on various datasets with coarse point labels, to further verify
the effectiveness of our PAL framework, we conduct addi-
tional experiments on the SIRST3, NUAA-SIRST, NUDT-
SIRST and IRSTD-1K datasets with centroid point labels in
this section.

Evaluation on the SIRST3 dataset with centroid point
labels. As shown in Tab. 9, consistent with the use of coarse
point labels, when the networks (UITUNet, MSDA-Net) with
obvious performance advantages under full supervision are
embedded into the LESPS framework for single point su-
pervision tasks, the potential performance advantages of
these networks cannot be effectively exploited. However,
the performance change trend of each SIRST detection net-
work equipped with our PAL framework under single-point
supervision is basically consistent with that of the network
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Figure 4. Visualization of several excellent methods on the SIRST3 dataset with coarse point labels. Red denotes the correct detections,
blue denotes the false detections, and denotes the missed detections. Every two rows from top to bottom: Image, DLN Full, DLN

Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 5. Visualization of several excellent methods on the SIRST3 dataset with centroid point labels. Red denotes the correct detections,
blue denotes the false detections, and denotes the missed detections. Every two rows from top to bottom: Image, DLN Full, DLN
Centroid + LESPS, DLN Centroid + PAL, True label.



under full supervision. Our PAL framework can build an
efficient and stable bridge between full supervision and sin-
gle point supervision tasks. Meanwhile, compared with the
LESPS framework, using our PAL framework improves the
IoU by 8.53%-29.10%, the nloU by 9.33%-32.30%, and
the P; by 1.07%-6.71% on the comprehensive SIRST3-
Test. The improvement is very obvious. Compared with the
fully supervised task on the SIRST3-Test, our PAL frame-
work can reach 79.33%-84.63% on IoU, 82.08%-87.05%
on nloU, and has comparable performance on P,. In addi-
tion, by observing the results of the three decomposed test
subsets, our PAL framework has a stable performance that
is better than that of the LESPS framework and is in line
with the full supervision performance trend. These verify
that the proposed PAL framework has excellent generaliz-
ability and robustness for SIRST detection tasks in multiple
scenes and multiple target types.

Evaluation on three individual datasets with centroid
point labels. To further explore the stability of the PAL
framework when there are few training samples and cen-
troid point labels are used, we conduct separate experi-
ments on the NUAA-SIRST, NUDT-SIRST, and IRSTD-
1K datasets. From Tab. 10, consistent with the results us-
ing coarse point labels, the performance of DLNs equipped
with the PAL framework is significantly better than that
with the LESPS framework. At the same time, some DLNs
equipped with the LESPS framework will experience the
phenomenon of “model invalidity” where the final gener-
ated model does not meet the F, requirements. Specifi-
cally, compared with the LESPS framework, using the PAL
framework improves the IoU by 9.39%-49.27%, the nloU
by 7.67%-47.18%, and the Py by 1.01%-41.45%. The im-
provement is very significant. In addition, except for some
minor differences, the performance change trend of each
SIRST detection network equipped with our PAL frame-
work under single point supervision is basically consistent
with that of the network under full supervision. These re-
sults fully verify that our PAL framework still has excellent
robustness in the single point supervised SIRST detection
task with a small number of training samples.

G. More Qualitative Results

To further qualitatively compare and analyze the perfor-
mance of the proposed PAL framework, in this section, we
present detailed visualizations of the detection results of
multiple methods on multiple datasets using either coarse
point labels or centroid point labels.

Visualization on the SIRST3 dataset. As shown in Fig. 4
and Fig. 5, we can find that whether using coarse point la-
bels or centroid point labels, DLNs equipped with our PAL
framework are significantly better than those equipped with
the LESPS framework. From the 3D results, the LESPS
framework easily leads to a large number of missed de-

tections in difficult scenarios, whereas the PAL framework
can solve this problem. In addition, for some images, the
target-level detection effect of DLNs equipped with the
PAL framework under single point supervision is even bet-
ter than that under full supervision. From the 2D results,
DLNs equipped with the PAL framework are significantly
better than the LESPS framework in pixel-level segmenta-
tion. These results fully demonstrate the effectiveness of
our proposed PAL framework for the SIRST detection task
with single-point supervision.

Visualization on three individual datasets. As shown in
Figs. 6 to 17, we provide a detailed visualization of various
methods, different point labels and different training frame-
works. First, when the LESPS framework is used, there
is a significant decrease in detection performance in some
networks, such as Fig. 10, Fig. 11, Fig. 16, and Fig. 17.
This shows that the LESPS framework is prone to unsta-
ble performance when facing a dataset with few samples.
Secondly, DLNs equipped with the PAL framework gener-
ally have more refined segmentation effects than LESPS.
Finally, compared with the detection results with full su-
pervision, DLNs equipped with the PAL can achieve simi-
lar results with single point supervision. These results fully
demonstrate the robustness of our proposed PAL framework
on the single point supervised SIRST detection task with a
small number of samples.
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Figure 6. Visualization of MLCL-Net on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 7. Visualization of ALCL-Net on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 8. Visualization of DNANet on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections, false
detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 9. Visualization of GGL-Net on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections, false
detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 10. Visualization of UIUNet on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections, false
detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 11. Visualization of MSDA-Net on the SIRST3 dataset with coarse point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Coarse + LESPS, DLN Coarse + PAL, True label.
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Figure 12. Visualization of MLCL-Net on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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Figure 13. Visualization of ALCL-Net on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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Figure 14. Visualization of DNANet on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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Figure 15. Visualization of GGL-Net on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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Figure 16. Visualization of UIUNet on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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Figure 17. Visualization of MSDA-Net on the SIRST3 dataset with centroid point labels. Red, blue, and denotes correct detections,
false detections, and missed detections. From top to bottom: Image, DLN Full, DLN Centroid + LESPS, DLN Centroid + PAL, True label.
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