
GENFLOWRL: Shaping Rewards with Generative Object-Centric Flow
in Visual Reinforcement Learning

Supplementary Material

1. Cross-Embodiment and Cross-Domain Data
Collection

To train the flow generation model, we collect a dataset con-
tains 12k trajectories of three different embodiments, where
they work with ten different tasks from two different task
domains. We aim to utilize different embodiments for high-
lighting that object-centric flow can be trained with large
scale diverse training data.

In the setting of Im2Flow2Act [11], we utilize their
sphere robot dataset as the first kind of cross-embodiment
data. Four tasks, which are PickNPlace, Pouring, Opening,
and Folding, are used for data collection. Also shown in
Im2Flow2Act [11], this kind of data are proposed to em-
ulate the cross-embodiment human data in the real world.
Out of those tasks, we design a new contact-rich manipu-
lation task Pivoting with the UR5 robot for collecting data.
To collect robot data, we place the robot in different initial
positions and use a manipulation script to move it to five
different contact points. Then, we apply five different ac-
tion scripts to enable the robot to stand the peg up and make
contact with the wall. For data in the MetaWorld [12], the
task setting and robot used for data collection was totally
different from the Im2Flow2Act[11]. We choose five dif-
ferent tasks, which are Assembly, Coffee Push, Door Close,
Lever Pull, and Stick Pull. Those data are collected by the
Sawyer Robot. In this benchmark, we rollout the trained
RL model in MetaWorld [12] for data collection. Each task
contain 1200 trajectories, where we have 12k training data
in total. The visualization of each embodiment are shown
in Fig. 1.

2. Tasks Descriptions

We select four tasks from Im2Flow2Act [11], five tasks
from MetaWorld [12], and one self-designed task pivoting.
• PickNPlace: Pick a mug from one random position to the

bowl in another random position.
• Pouring: Pick a mug from one random position and pour

the water to a bowl in another random position.
• Opening: Grasp the handle and open the cabinet.
• Folding: Fold the cloth from one corner to another corner.
• Pivoting: Contact with the peg without grasping, and

pivot it to stand up by interacting with the wall.
• Coffee Push: Push the coffee mug to a specific position.
• Door Close: Close the door of a cabinet.
• Assembly: Pick up a stick and align its square hole with a

peg on the table.

Cross-embodiment Dataset

Sphere Robot Sawyer Robot UR5 RObot

Figure 1. Visualization of cross-embodiment data.

• Lever Pull: Grasp the lever and pull it up to the up right
position.

• Stick Pull: Pick up a stick, insert it into a kettle, and pull
the kettle to a specific position.

3. Flow Generation Implementation Details
In this section, we aim to share more details about imple-
mentation, training, and processing of our flow generation
model, which is similar to Im2Flow2Act [11].

3.1. Implementations
The first step is getting the training dataset. We use Ground-
ing DINO [7] to detect the bounding box of the described
object from the initial RGB frame, and then uniformly sam-
ple keypoints within the box. To track those keypoints from
the video, we apply the SOTA keypoint tracking founda-
tion model [5] for keypoint tracking. Unlike the TAPIR [1]
used in previous work [11], CoTracker [5] can track oc-
cluded objects in the image, which is extremely important
for contact-rich manipulation tasks. Then, we formulate the
tracked keypoints as object-centric flow F0 ∈ R3×T×H×W

with temporal representation in T time space. The first two
channels represent the pixel coordinates of object keypoints
in image space, while the third represents their visibility
during the execution.

The generated flow is conditioned on the initial image
of the task, the initial keypoints, and the text description.
The encoder deisgn for the inputs are also the same as the
[11]. The text descriptions are processed into the CIIP [9]
to obtain text embeddings. For the initial image, we utilize
the CLIP encoder to get the patch embeddings. The ini-
tial keypoints are encoded through fixed 2D sinusoidal po-
sitional encoding. Finally, those inputs are processed into
the denosing process through cross-attention.

With this flow representation, we can leverage the
diffusion-based video generation based on AnimateDiff

[18] for flow generation. Same as the Im2FLow2Act [11],
we encode the object flow into a latent space and train the
generative model based on it. Similar to the StableDiffu-
sion [10], we use the auto encoder VA-GAN [2] to encode
the flow into low dimentional embeddings. Then, to uti-
lize the low-dimensional latent space, we utilize a two-stage
training process. Firstly, we fix the encoder from the AE
and finetune the pretrained decoder to better adapt it to the
flow images. Then, same as the Im2Flow2Act, we insert
the motion module layer into StableDiffusion proposed by
Animatediff [3] to model the temporal dynamics for flow
generation. The second stage is training the motion module
layer from scratch but only insert LoRA (Low-Rank Adap-
tation) layers [4] into the SD model.

3.2. Training Details
Training with cross-embodiment data from two different
task domains, we process both the image from the tasks
in Im2Flow2Act [11] and MetaWorld [12] into resolutions
480× 480. For extracting keypoints from the bounding box
generated by Grounding Dino [7], we set the spatial and
temporal resolution to H = W = 32 and T = 32 for generating
flow for 1024 keypoints over 100 steps, which also means
that 100 keypoints set can be used for reward shaping in our
reward model. To train the model on our cross-embodiment
dataset, we firstly train the decoder of VQ-GAN [2] in Sta-
bleDiffusion [10] for 400 epoches with a learning rate of
5e − 5. Secondly, for training AnimateDiff, we insert the
LoRA [4] with a rank of 128 into the Unet from StableD-
iffusion and train the motion module layer from scratch
with the same hyperparameter shown in Im2Flow2Act [11],
which is trained with learning rate of 1e− 4 for 300 epochs
using Adamw [8] optimizer with weight deacy 1e− 2 betas
(0.9, 0.999), and epsilon 1e− 8.

3.3. Flow Post Processing
Similar to Im2Flow2Act [11], we use motion filter to extract
moving keypoints from the object itself. More specifically,
we use moving filter to remove those static keypoints and
use SAM [6] filter to remove keypoints which are not on
the object, such as keypoints on the robot or the table.

Moving Filter: Since some of the keypoints selected
from bounding box are sampled from the environment, we
use the moving filter to extract the moving points from those
keypoints. Then, we use moving filter to remove those key-
points whose movement in the image space (480 × 480) is
below a certain threshold. For all the tasks, we select 50
pixels as the threshold for removing those static keypoints.
This method can effectively remove those background key-
points.

SAM Filter [6]: Since we also use robot data in our
dataset, those keypoints on the robot are also will be
counted as moving keypoints. Then, using SAM [6] to do

semantic segmentation and remove those moving keypoints
on the robot is necessary. We utilize SAM to obtain the
segmentation and then iterate through the keypoints, filter-
ing out those whose corresponding segment area exceeds a
predefined threshold. To preserve keypoints on objects with
rich textures, we set a high threshold of 10,000 across all
tasks.

Finally, we randomly sampled 128 points from the se-
lected keypoints for our reward model and policy input.

4. RL Implementation Details
4.1. Reward and Policy Input with Generated Flow
For both RL training in Im2Flow2Act [11] and Meta-
World [12], we firstly need to generate the initial flow from
the first frame for each iteration, which will be used for
both policy input and reward shaping. Then, the observa-
tion space of the policy input is 128× 3, where we sampled
128 keypoints from the object.

To do online flow matching with the generated flow, we
also utilize CoTracker [5] for online tracking in the real-
robot execution. Using the same motion filters, 128 key-
points will be sampled from the realtime motion. The on-
line keypoints tracking will be generated for each timestep
during the robot execution. Then, those keypoints will be
processed as δ-flow for reward shaping.

Since our flow generation model will generate 100
frames with keypoints subset, we can use each centroid cal-
culated from the keypoints subset of those 100 frames as re-
ward. For reward calculation and policy input. We limit the
max step episode into number less or equal to 100 steps
(respectively for different tasks) and use them for real-time
flow matching in reward generation and policy learning.

4.2. RL Reward Design
Out of the flow-derived reward, our RL training Pipeline
also requires specific reward design for achieving the goal.

Reaching Reward: For all the tasks, we need to define
similar reaching reward to guide to robot move toward the
object. For tasks which required robot to grasp the object,
robot needs to open their gripper and reach the grasping po-
sition. For the tasks which required robot to push or con-
tact with the object, the robot will be guided to move to
contact with a certain area. The reward will be define as:
(1− tanh(10.0 · dgrip)).

Grasping / Contact Reward: We also design sparse re-
ward as a subgoal for guiding robot to accomplish the task.
For grasping task, we will set the reward to be 0.25 as the
reward. For contact reward, we will set the reward to be
0.25 once the gripper is contact with a certain area of the
object.

Goal-conditioned Reward: For all the task, we need to
define a goal state to showcase that the robot successfully

acchieve the goal. For most of the task, it should be eas-
ily, such as those defined task in MetaWorld [12] and some
simple task like PickNPlace. We can just define the final
position for object to be. For some other harder-to-define
tasks like pouring, we set up a target pose range as the goal,
which is limited to a certain position with certain orienta-
tions, where the orientation is sampled from (5π16

7π
16). For

opening, the reward will be defined by the opening distance,
which is 0.1m.

4.3. Training Details
The Training hyperper parameters have been shown in Ta-
ble 1.

Table 1. Hyperparameters for DrQv2 with Flow-derived Reward.

Hyperparameter Value

Environment

Action repeat 3 (MetaWorld)
3 (Im2Flow2Act)

Frame stack 1
Rendered Image 480× 480
Observation size 128× 3
Reward type Sparse

DrQv2

Data Augmentation ±4 RandomShift
Replay buffer capacity 106

Discount γ 0.99
n-step returns 3
Seed frames 4000
Exploration steps 2000
Exploration stddev. clip 0.3
Exploration stddev. schedule Linear(1.0, 0.1, 3× 106)
Soft update rate 0.01
Optimizer Adam
Batch size 256
Update frequency 2
Learning rate 10−4

4.4. Visualization of delta-flow model
To formulate the delta-flow reward model, we first calculate
the centroid of the flow at each time step and calculate the
relative translation and rotations between the current step
and initial step. More visualization of the calculated cen-
troid at each time step is shown in Fig. 2.

5. Ablation Study
5.1. Ablation Study for Robustness of reward model
In real-world scenarios, the flow trajectory predicted by the
diffusion model or the tracker can be noisy. To investi-

Figure 2. Visualization of the 2d delta-flow extractions.

gate the effect of these noises on policy performance, we
simulate real-world noise for our method. Specifically, we
build a noise model to cumulatively perturb trajectories and
deviate endpoints, using the addition of Brownian motion
(i.e., Gaussian random walk) and Brownian bridge (i.e., tra-
jectories with predefined perturbed endpoints), with sepa-
rate controllable standard deviations. We set up four types
of random noise: small Gaussian (gauss=1x, drift=0x),
large Gaussian (gauss=4x, drift=0x), small drift (gauss=2x,
drift=1x), and large drift (gauss=2x, drift=2x). A vivid visu-
alization of our noise composite model applied to a Bessel
smoothed trajectory is displayed in Fig. 3.

We evaluate the performance of our model after apply-
ing this noise model to the generated flow in five challeng-
ing tasks. The result is shown in Table 2. Since our model
is already trained on generated flows with different magni-
tudes of noise and due to our task-oriented rewards, it has
the robustness to noise in the generated flows. Therefore,
our method still achieves a similar performance with tra-
jectory noise, especially for the cases with large Gaussian
noises.

Furthermore, our method can maintain relatively high
performance when the goal position is largely drifted from
the ground-truth by ≥ 20 pixels in the tasks with position-
sensitive evaluation, e.g., Folding and Pouring (Fig. 3).

PickNP. Pour Open Fold Pivot

GENFLOWRL 95 95 95 80 85
+Gauss×1 Drift×0 95 95 90 80 85
+Gauss×4 Drift×0 95 90 90 75 80
+Gauss×2 Drift×1 95 90 90 70 85
+Gauss×2 Drift×2 85 75 85 65 75

Table 2. Performance for noise sensitivity analysis on five tasks.
Noises are added to flow trajectories for comparisons.

5.2. Ablation Study of Different Number of Key-
points

To conduct more evaluations with different number of key-
points, we evaluate the performance with 32 keypoints and
64 keypoints instead of 128 keypoints in the experiments.
We find that the performance is similar to using 128 key-
points, which highlights that the stability of the delta-flow
fomulations. The results is shown in Fig. 4.

Figure 3. Visualization of the simulated noised 2D trajectory.

Figure 4. Results of RL performance with different number of
keypoints.

Tapir

CoTracker

t

Figure 5. Visualization of the comparison of trackers.

5.3. Ablation Study of Tracking Model

Compared with Im2Flow2Act [11], we propose to use Co-
Tracker [5] instead of [1] since Cotracker is better for oc-
cupation, which is important for contact-rich manipulation
tasks.

To evaluate the performance of them, we visualize the
qualitative results of them for the contact-rich manipulation
task Pivoting, which is shown in Fig. 7. Through qualitative
results, the CoTracker has much better performance than
Tapir when the object meets obstruction.

6. Real World Case Study Implementation De-
tails

In this section, we set collect actions from robot actions
script with a limit for 200 steps for Folding and PickNPlace,
and 100 steps for Pouring and Pivoting respectively. The
robot control frequency and the CoTracker frequency are
both 2.5 Hz. For collecting human demonstrations, the fre-
quency of the CoTracker is 5 Hz, and the final number of
steps are the same as the robot demo. Then, we calculate
the flow matching reward between the human trajectory and
robot trajectory.

t

P
i
c
k
N
P
l
a
c
e

P
o
u
r
i
n
g

O
p
e
n
i
n
g

F
o
l
d
i
n
g

P
i
v
o
t
i
n
g

C
o
f
f
e
e

A
s
s
e
m
b
l
y

C
l
o
s
i
n
g

L
e
v
e
r

S
t
i
c
k

P
u
l
l

Figure 6. The qualitative result of the policy rollout in simulatior.

t

H
u
m
a
n

R
o
b
o
t

H
u
m
a
n

R
o
b
o
t

Figure 7. The qualitative result of the Flow Matching Reward Case Study in the real world.

References
[1] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush

Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.
Tapir: Tracking any point with per-frame initialization and
temporal refinement, 2023. 1, 4

[2] Patrick Esser, Robin Rombach, and Björn Ommer. Tam-
ing transformers for high-resolution image synthesis. CoRR,
abs/2012.09841, 2020. 2

[3] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and
Bo Dai. Animatediff: Animate your personalized text-to-
image diffusion models without specific tuning, 2024. 2

[4] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021.
2

[5] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker: It is better to track together. 2023. 1, 2, 4

[6] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Paul Rolland, Laura Gustafon, Tete Xiao, Spencer
Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár,
and Ross Girshick. Segment anything. arXiv preprint
arXiv:2304.02643, 2023. 2

[7] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection. In
European Conference on Computer Vision, pages 38–55.
Springer, 2025. 1, 2

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 2

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 1

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022. 2

[11] Mengda Xu, Zhenjia Xu, Yinghao Xu, Cheng Chi, Gordon
Wetzstein, Manuela Veloso, and Shuran Song. Flow as the
cross-domain manipulation interface, 2024. 1, 2, 4

[12] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Avnish Narayan, Hayden Shively, Adithya Bellathur, Karol
Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforce-
ment learning, 2021. 1, 2, 3

	Cross-Embodiment and Cross-Domain Data Collection
	Tasks Descriptions
	Flow Generation Implementation Details
	Implementations
	Training Details
	Flow Post Processing

	RL Implementation Details
	Reward and Policy Input with Generated Flow
	RL Reward Design
	Training Details
	Visualization of delta-flow model

	Ablation Study
	Ablation Study for Robustness of reward model
	Ablation Study of Different Number of Keypoints
	Ablation Study of Tracking Model

	Real World Case Study Implementation Details

