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Supplementary Material

7. More Details on ViMo Dataset

Explanation of Utilizing Synthetic Data. As described
in Sec. 4, since some of the data are difficult to acquire
from publicly available datasets, we adopt generative mod-
els to obtain some desired data to form part of our dataset.
To guarantee the quality of the data, we leverage several
cutting-edge generative models [1, 7, 20, 28, 49, 65, 83, 91]
that are known for their superior performance, and manu-
ally screen the synthetic data. It is worth mentioning that
synthetic data is customizable and low-cost. In addition,
the videos generated by the models have a wide variety of
characters and backgrounds. Another advantage of using
synthetic data is that it does not violate the subject’s right to
likeness because none of the persons in the synthetic videos
are real. Although there may be some distribution differ-
ences between real data and synthetic data, previous works
(e.g., HDM [99] and InterTrack [100]) use synthetic data
to train and then test on real data, which demonstrate the
reliability of using such data.

Data Annotation. Ego-Humans [42] and Harmony4D [43]
provide genuine video-motion pairs, so we don’t need man-
ual pairing. For Inter-X [102], we render the actor’s motion
into video and convert it to a realistic style using Runway
Gen3 [77], then use the reactor’s motion as GT reactions,
which ensures reaction correctness. For videos without raw
paired GT reactions, the annotation criteria consider two
main dimensions: motion quality and reaction plausibil-
ity, to ensure physically plausible and contextually correct
reaction motions. The entire procedure consists of labeling
instruction preparation, pre-labeling trial, labeling instruc-
tion update, post-labeling, and checks by inspectors. After
annotation, a user study rates the motion quality (4.51) and
reaction plausibility (4.49) of GT pairs in our dataset (main
paper Fig. 4).

Pose Representation. We use the same pose representa-
tion as in HumanML3D [26], which is over-parameterized,
expressive, and neural network friendly [54], and has
been widely adopted in recent works [12, 28, 71, 90,
115]. Each pose in the motion sequence is defined by
(7@, 7%, 7%, Y, 5P, 5V, 57, ¢f), where #* € R is root angu-
lar velocity along the Y-axis; #* € R and 7* € R are root
linear velocities on the XZ-plane; ¥ € R is root height;
jP € R¥,jv € R% and ;" € RY are the local joints posi-
tions, velocities and rotations in root space, with j indicating
the number of joints; ¢/ € R* are binary features repre-
senting foot ground contacts derived from thresholding the
velocities of the heel and toe joints.

Data Distribution. Fig. 9 and Fig. 10 provide some infor-

mation on the distribution of the videos and the motion data,
respectively.

8. More Details on Evaluation Metrics

In line with prior practices [26, 90], each experiment is con-
ducted 20 times, and the reported values of the metrics in-
dicate the mean along with a confidence interval of 95%.
FID. Frechet Inception Distance (FID) is adopted as the
principal metric to evaluate the overall quality of the gen-
eration, which is calculated between the feature distribution
of the generated motions and the feature distribution of the
real motions. The feature extractor is from [26].

Diversity. Diversity measures the variability and richness
of motions, which is calculated by averaging the Euclidean
distances of 300 randomly sampled pairs of motions.
MultiModality. MultiModality measures the diversity of
human motion generated from the same video. Specifically,
it represents the average variance for a single video by com-
puting the Euclidean distances of 10 sampled pairs of gen-
erated motions. For each video, we generate the motion 30
times.

Explanation of the Absence of Action Recognition Ac-
curacy. [58, 103] use a pretrained model to classify the
generated motions and calculate the action recognition ac-
curacy. However, this does not apply to our task. In our
setup, motions generated from videos in one category may
belong to multiple categories, as long as they are plausible
reactions to the videos. For example, the reactions to “walk-
ing towards happily” might be a wave, a handshake, or even
a hug. Besides, the reactions to “hitting” might be to dodge,
parry, or counterattack... Therefore, we do not use action
recognition accuracy as one of our evaluation metrics.

Some other works [21, 59] of human reaction genera-
tion do not use it either. [58, 103] use specific pose repre-
sentations, they train the classification model to obtain the
feature extractor mainly for measuring FID, which is inci-
dentally used to measure accuracy. In contrast, the motions
in our ViMo dataset are provided with the same pose repre-
sentation as in HumanML3D [26]. Thus, we can naturally
employ the high-quality feature extractor from [26], which
is trained on much more motion data than in our dataset.

In the context of human reaction generation, the accu-
racy is mainly used to measure reaction plausibility, i.e.,
whether the generated reaction is plausible for the input.
However, as mentioned earlier, the accuracy is not applica-
ble to our task. To compensate for the lack of reaction plau-
sibility evaluation, we investigate it through visualization
and user study (Sec. 5.2) following [21]. In the future, more
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Figure 9. Distribution of the video data in ViMo dataset.
200

Figure 10. Distribution of the motion data in ViMo dataset.

powerful multimodal large language models (MLLMs) may also be employed to evaluate it.




Reconstruction Generation
Method
FIDJ MPIJPE (mm)J FIDJ Re.Plau.t
VQ-VAE 0.484+0-012 38.7 0.625+0-036 3.66
RVQ-VAE 0.133%0.002 32.8 0.427+0.014 3 g2

Table 3. VQ-VAE v.s. RVQ-VAE. =+ indicates 95% confidence
interval. Bold face indicates the best result.

9. More Details on Implementation

Our models are implemented using PyTorch. TC-CLIP [45]
is initialized with the weights of CLIP [73] with ViT-B/16
and then pretrain on Kinetics-400 [41], a large-scale action
recognition dataset with a total of 400 action classes and
around 240k training videos. Therefore, the video encoder’s
action recognition capability is enhanced on the basis of its
general recognition ability. This applies to our scenario,
as most of the data in our ViMo dataset are about human-
human interactions. Following [45, 96], 16 frames are sam-
pled from each video before entering the video encoder, and
all frames are resized to a uniform resolution of 224 x 224.
Our RVQ-VAE has the same architecture as in MoMask
[28] and the pose representation in ViMo is the same as
in HumanML3D [26], so the RVQ-VAE can be initialized
with the weights obtained by pretraining on HumanML3D.
As for Transformers, we set the number of Transformer de-
coder units Njayers = 6 in our models. Our models are
trained with the AdamW [60] optimizer. The learning rate
reaches 2e-4 after 20 and 250 iterations with a linear warm-
up schedule for training RVQ-VAE and Transformers, re-
spectively. All models are trained using 2 NVIDIA A40
GPUs.

10. More Experimental Results

Ablation Study. We ablate the RVQ-VAE choice, as re-
ported in Tab. 3, indicating that RVQ-VAE effectively im-
proves both reconstruction and generation quality. We also
present experimental results with different number of Trans-
former decoder units Niyyers in Tab. 4. We notice that
HERO achieves the best overall performance when setting
Nlayers = 6.

Different Broad Categories of Interactions. The quantita-
tive results on different broad categories of interactions are
reported in Tab. 5. Numerically, HERO performs well in the
broad category of human-human interactions. The subopti-
mal performance of HERO in other broad categories may
be due to limited data in these categories. It is also possible
that these broad categories are harder for the model to learn.
Nevertheless, from the visualization results shown in Fig. 5
of the main text, HERO can generate plausible reactions in
all broad categories.

The Same Action with Different Emotions. We can find
in Tab. 6 that the reaction generation of “walking towards

Niayers FID| Diversity— MModalityt
- 7.954:t0.074 (R.) _

4 0.659%0-01 7.549+0-051 1.579+0.059

5 0.639+0-01 7.6040-075 1.642+0.046

6 0.427%0:014 7.801+0-061 1.614%0:040

7 0.589%0-015 7.621+0-068 1.649%0-051

8 0.683%0:014 7.499%0-074 1.550+0.041

Table 4. Ablation studies on the number of Transformer de-
coder units Niayers. — means the closer to the real motions the
better. R. means real motions.

Category FID] Diversity— MModality
Scene-Human R. - 3.666F0-111 j
Scene-Human 3.726%0249 3 6760184 1 916+0063
Animal-Human R. - 6.755%0-387 -
Animal-Human 1.809%0-075 G go5L0-380 | 359+0.044
Human-Human R. 7.807+0-063

Human-Human 0.421F001L 7 737%0.043 1 45440.042

Table 5. Evaluation results on different broad categories of
interactions.

Category FID| Diversity— MModality?
Angrily R. - 3.411%0-215 i
Angrily 534710430 4 93,+0.241 o (7 430.064
Happily R. - 5.074%0-290 j
Happily 5.215+0-627  3.835+0-216 1 831+0.056
Expressionlessly R. - 1.548+0-082 ~
Expressionlessly 0.900%0-146 1 383+0.123 ( 5gg+0.039

Table 6. Evaluation results on “walking towards” with different
emotions.

angrily” and “walking towards happily” is much more dif-
ficult to learn than that of “walking towards expression-
lessly”. However, Fig. 8 of the main text shows that HERO
is able to synthesize distinct plausible reactions according
to different emotions, even if the actions in the videos are
the same.

Generalization Ability. We train the models on the Seen
set and evaluate them on the Unseen set. The quantitative
comparisons reported in Tab. 7 show that HERO achieves
the best FID score, and values of diversity and multimodal-
ity comparable to those of other methods. Some visualized
cases can be found in Fig. 7 of the main text.

Training on More Pairs. In addition to ViMo-base men-
tioned in Sec. 5.1, we manually pair each video and two
motions in the training set of ViMo-base to form twice as
many training data as in the base dataset, that is, 5600 video-



Method FID| Diversity—  MModality 1
Real - 7 935+0.061 j

BAMM [71] 9.541%0-079 71430082 o 1go+0.062
MoMask [28] 2.477%0049 7 157+0.084 5 ()g+0.064
HERO 2.15610-054 7 g5£0.066 o )g3+0.057

Table 7. Quantitative evaluation on the Unseen set.

Num. of T.P. FID| Diversity—  MModality?
Real _ 7 954%0.074 j

2800 0.427%10:014 7801 +0:061 1 g14+0.040
5600 0.398%0-012 7 g 5+0.069 | 590+0.058
8400 0.376F0:014  7.833+0:064 1 499+0.049

Table 8. Evaluation results on different number of training
pairs. T.P. means training pairs.

motion pairs (ViMo-T2). Similarly, we also obtain 8400
video-motion pairs (ViMo-T3) for training, which is three
times the number of training pairs in the base dataset. Note
that ViMo-base, ViMo-T2, and ViMo-T3 share the same
test set.

As shown in Tab. 8, training on more data pairs leads to
consistent improvements in FID and diversity. The decay
in multimodality implies a decrease in the diversity of reac-
tions generated by the model to a single video, but perhaps
indirectly indicates that the model is becoming more confi-
dent in the generated motions. Although multimodality is
undoubtedly important, [28] emphasizes its role as a sec-
ondary metric that should be evaluated alongside primary
performance metrics like FID. Theoretically, we can pair
more than 100 k video-motion pairs. The lack of training
pairs can be alleviated to some extent by pairing more data.

11. Discussion

The Modular MLLM-based Pipeline. Another imple-
mentation to deal with our task might be to utilize a combi-
nation of a multimodal large language model (MLLM) and
a text-to-motion generative model. Specifically, the MLLM
gives a textual description of the corresponding reaction
based on the input video, and the text-to-motion genera-
tive model synthesizes the motion based on this description.
However, after extensive testing of MLLMs [11, 40, 55, 63],
we observe that despite being able to describe the video
content well, these MLLMs struggle to output texts that
accurately describe reactive motions in detail. In addition,
MLLMs tend to generate redundant information (which re-
duces the quality of the text used for motion generation),
despite being asked not to. These issues prevent them from
outputting textual descriptions like those written by humans
in HumanML3D, making it difficult for them to perform as

an ideal preceding module for the text-to-motion generative
model. In contrast, our framework adopts an end-to-end
manner that does not require manually crafted text prompts
and is much more efficient.

Future Work. Although as discussed above, an interesting
direction is to utilize the multi-turn conversation capability
of MLLMs to instruct the model for motion reasoning, gen-
eration, and editing [38]. In addition, modeling the details
of hand motions to synthesize more expressive reactions is
worth exploring [61]. Moreover, generating a highly diverse
set of reactions from the same input video, as well as pro-
ducing motions that are aligned with the videos in both spa-
tial and temporal dimensions, remains challenging.
Broader Impacts. According to Rosenblum [76], vision is
the dominant sense in human perception, accounting for ap-
proximately 80%—90% of sensory input. Similarly, Jensen
[36] estimates that around 83% of information acquired by
humans comes from vision. Compared to texts, videos con-
tain denser information. Our work is no longer limited to
enabling machines to passively follow instructions to gen-
erate motion. Instead, we aim to empower them to proac-
tively explore how to interact with the world through visual
signals. We believe that our work has the potential for a
wide range of applications, especially in the emerging fields
of AR/VR and embodied intelligence.
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