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A. Dataset Details
A.1. RefCOCO
RefCOCO [19] is a dataset for referring image segmenta-
tion (RIS) and referring expression comprehension (REC),
built on images and annotations (segmentation masks and
bounding boxes) from MS-COCO [7]. It was collected us-
ing the approach used in ReferItGame [5], where one player
writes a referring expression for a segmented object, and
another player selects the corresponding object in an im-
age. The dataset contains 142,210 expressions for 50,000
objects across 19,994 images. It is divided into train, vali-
dation, and test sets. The test set is further split into testA
and testB. The testA contains images with people, while
the testB includes images with all other objects. This split
structure allows for separate evaluation of human and non-
human referents.

A.2. RefCOCO+

RefCOCO+ [19] follows the same approach as RefCOCO
but prohibits spatial terms like “left” or “right” and provides
expressions based on object attributes. Thus, RefCOCO+ is
characterized as a more challenging dataset than RefCOCO,
as it requires accurate object localization using only visual
attributes without relying on positional cues. It includes
141,564 expressions for 49,856 objects across 19,992 im-
ages, and is split in the same way as RefCOCO.

A.3. RefCOCOg

RefCOCOg [11, 12], unlike RefCOCO and RefCOCO+,
was collected in a non-interactive setting via Amazon Me-
chanical Turk (AMT), resulting in the longer and more de-
tailed textual forms. While RefCOCO and RefCOCO+ have
concise expressions with an average length of 3.61 and
3.53 words, respectively, RefCOCOg expressions are sig-
nificantly longer, averaging 8.43 words. This dataset was
designed to evaluate a model’s ability to comprehend more
complex and contextually rich referring expressions. Ref-
COCOg consists of 95,010 expressions for 49,822 objects
across 25,799 images and is divided into two partitions: the
Google [11] split and the UMD [12] split. In the Google
split, objects are separately assigned to either the train or
validation set while allowing the same image to appear in
both sets without object overlaps. The UMD split separates
the data into train, validation, and test sets.

Figure 5. The illustration of our GRES framework, where the
empty prediction module is added to the original framework after
the feature extraction of the encoder. We also remove the subject
distributor within an encoder. Other processes except for these
minimal modifications are the same as the original one.



Methods Encoders RefCOCO RefCOCO+ RefCOCOg
Visual Textual val testA testB val testA testB val(U) test(U) val(G)

Trained on each Single RefCOCO Dataset
Dual-encoder based Methods

VPD23 [21] VQGAN CLIP 73.46 75.31 70.23 61.41 67.98 54.99 63.12 63.59 -
CGFormer23 [14] Swin-B BERT 74.75 77.30 70.64 64.54 71.00 57.14 64.68 64.09 62.51
RISCLIP24 [6] CLIP-B CLIP 73.57 76.46 69.76 65.53 70.61 55.49 64.10 65.09 -
ReMamber24 [18] VMamba-B CLIP 74.54 76.74 70.89 65.00 70.78 57.53 63.90 64.00 -

Single-encoder based Methods
Shared-RIS24 [20] BEiT3-B 75.50 76.66 73.03 70.34 73.75 65.07 68.50 69.17 66.65
One-Ref24 [17] BEiT3-B 77.55 80.96 73.51 70.82 74.53 64.06 70.68 70.61 -
Latent-VG (ours) BEiT3-B 77.41 79.92 74.83 70.92 74.56 63.68 70.74 70.82 69.19

Trained on Combined RefCOCO Dataset
Dual-encoder based Methods

PolyFormer23 [9] Swin-B BERT 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05 -
ReMamber24 [18] VMamba-B CLIP 75.06 78.27 71.82 64.40 69.49 56.34 66.70 68.05 -

SAM based Methods
Chen. et al24 [1] SAM + Swin-B BERT 75.37 77.20 71.38 68.07 73.46 59.47 67.75 69.50 -
Prompt-RIS24 [13] SAM + CLIP-B CLIP 76.36 80.37 72.29 67.06 73.58 58.96 64.79 67.16 69.01

LLM based Methods
GSVA-7B24 [16] SAM + CLIP-L Vicuna 77.13 78.82 73.45 65.87 69.47 59.55 72.72 73.36 -
LaSagnA-7B24 [15] SAM + CLIP-L Vicuna 76.30 77.38 72.76 64.42 67.62 58.63 71.13 72.01 -

Single-encoder based Methods
One-Ref24 [17] BEiT3-B 81.06 83.05 77.80 72.24 77.32 67.08 75.14 77.21 -
Latent-VG (ours) BEiT3-B 81.04 82.67 79.77 75.27 78.25 69.65 75.88 76.55 75.02

Table 8. oIoU comparison with other RIS methods on RefCOCO, RefCOCO+, and RefCOCOg datasets.

A.4. GRefCOCO
GRefCOCO is a dataset designed for Generalized Referring
Expression Segmentation (GRES) [8], extending the stan-
dard RefCOCO dataset by supporting the cases of multi-
target and no-target expressions. Unlike traditional RIS
datasets, where each expression corresponds to a single ex-
istent object, GRefCOCO offers a description referring to
multiple or non-existent objects. This makes the dataset
more flexible and suited for real-world scenarios. The
dataset consists of 278,232 referring expressions, includ-
ing 80,022 multi-target expressions and 32,202 no-target
expressions, covering 60,287 instances in 19,994 images.

B. Details on GRES Framework

B.1. Framework
In Fig. 5, we present the GRES framework, where we add
the empty prediction modules to the original model by (1)
introducing an empty token to handle no-target cases, (2)
interacting the empty token with the output of the encoder
via cross-attention, and (3) imposing a binary classification
loss (Lnt) on the empty prediction. We also remove a sub-
ject distributor within an encoder. All other processes are
the same as the original framework.

B.2. Implementation Details for GRES
The differences in the detailed implementations for a GRES
framework lie in (1) halving the learning rate from 0.0001

to 0.00005 for more stable training on complex GRES sce-
narios, and (2) applying the loss weight of 0.5 to the empty
binary classification objective (Lnt). Other training recipes
are identical to the original visual grounding framework.

C. Additional Experiments
C.1. oIoU Results for RIS.
Tab. 8 shows the oIoU performance of our Latent-VG com-
pared to SoTA RIS methods on the RIS benchmarks. In
the single dataset setting, we achieve superior performance
over the methods [17, 20] based on the same backbone (i.e.,
BEiT3-B) as ours. In the combined dataset setting, our
Latent-VG surpass Prompt-RIS [13] and LaSagnA-7B [15],
even though they employ larger backbones (e.g., SAM and
CLIP-L) than ours.

C.2. Efficiency Comparison.
In Tab. 9, we compare the efficiency of our methods with
other visual grounding methods. The methods [2–4, 6, 10,
14] utilizing multi-scale features in their decoder incur high
FLOPs, whereas our simple decoding yields lower FLOPs
over them with the best results. Although One-Ref [17] for
a REC model is more efficient than ours, it does not simul-
taneously perform a RIS task.

C.3. Efficiency of Proposed Components.
In Tab. 10, we analyze the incremental computational cost
introduced by each proposed module. Adapting the latent



RIS Methods
Methods Params GFLOPs mIoU oIoU
DMMI [3] 341M 392 67.51 63.98
CGFormer [14] 252M 949 68.56 64.54
RISCLIP† [6] 375M 1380 69.16 65.53
Shared-RIS† [20] 239M 155 70.34 68.42
One-Ref† [17] 267M - 71.25 70.82
Latent-VG (ours) 267M 198 73.19 70.92

REC Methods
Methods Params GFLOPs Acc.
TransVG++† [2] 206M 396 75.39
MDETR‡ [4] 185M 642 81.13
Grounding-DINO‡ [10] 342M 464 82.75
One-Ref†‡ [17] 234M 162 86.38
Latent-VG (ours) 267M 198 86.41

Table 9. Efficiency and performance comparison with other RIS
and REC methods on the validation set of RefCOCO+. † denotes
that the public code is not released. ‡ indicates the models trained
on additional grounding data (e.g., Flickr30k or ReferIt) than ours.

expression initializer increases the computational cost by
11M parameters and 2 GFLOPs, due to (1) length trans-
form layers {ϕi}Ni=1 for initializing latent attributes and (2)
additional MLP heads for processing each class token dur-
ing prediction. In contrast, adding the subject distributor in-
curs only a negligible increase in computational cost, with
the additional parameters and GFLOPs being significantly
lower than those of other modules. Incorporating the vi-
sual concept injector adds 1M parameters and 1 GFLOPs
since the parameters of the concept tokens and FLOPs for
handling concept tokens are introduced. The computation
required for the loss function applied between class tokens
is also negligible.

Methods SD VCI Params GFLOPs
No Latent Exps 255M 195

+ Latent Exps

266M 197
✓ 266M 197

✓ 267M 198
✓ ✓ 267M 198

+ Lpos-cont ✓ ✓ 267M 198

Table 10. Analysis of the computational cost in different compo-
nents. No Latent Exps means the base model without any proposed
methods. SD and VCI denote the subject distributor and the visual
concept injector, respectively.

D. Analysis on Latent Expressions
D.1. Qualitative Analysis of each Expression
In Fig. 6, we visualize the prediction result of each latent
expression as well as the averaged final prediction with di-
verse cases. Each prediction of individual expression (i.e.,
Input Exp., Latent Exp.1 and Latent Exp.2) is obtained by
thresholding the corresponding probability map before av-
eraging them for the final prediction. In the first and second

Figure 6. Qualitative analysis of each expression. The outputs for
each expression (i.e., Input Exp., Latent Exp.1 and Latent Exp.2)
are obtained by thresholding the corresponding probability map
before averaging them for the final prediction.

Figure 7. More attention maps on each expression.

rows, we present the cases where the noisy output of the In-
put Exp. is complemented by the more precise output from
the Latent Exps, resulting in a correct final prediction. In
the third row, all predictions of each expression are noisy,
yet the final averaged output is accurate. In the last row, we
visualize a result that all outputs are generated precisely.



D.2. More Attention Maps on each Expression
Fig. 7 presents additional attention maps for each expres-
sion. To generate these maps, we average the attention
scores from all self-attention layers within an encoder.
The variability in the locations of the maximum attention
weight, along with the differently activated regions, indi-
cates that each expression exhibits distinct visual details.

D.3. More Qualitative Analysis
In Fig. 8, we provide additional qualitative analysis of our
Latent-VG compared to the base model without any of
the proposed modules (termed as No Latent Exp.). The
No Latent Exp. model often fails to distinguish the target
from other similar objects when the limited textual cues are
given. For instance, in the first row of Fig. 8, with the de-
scription “donut with a hole nearest coffee”, the No Latent
Exp. model captures a non-targeted donut, while our ap-
proach precisely selects the targeted donut, indicating our
superiority in capturing the target cues.

D.4. IoU Scores for each Expression
In Tab. 11, we report the IoU scores on the validation of Re-
fCOCO+ for each expression, as well as the final prediction.
Each IoU score is calculated between the ground truth mask
and the mask predicted by each expression. As all expres-
sions are optimized by the identical loss function, they ex-
hibit similar performances. However, the Latent Exps con-
sistently achieve slightly higher IoU scores than the Input
Exp., even though they are derived from the input expres-
sion. This demonstrates the enhanced ability of the latent
expressions to deliver target details into the model.

Metric Input Exp. Latent Exp.1 Latent Exp.2 Final Pred.
mIoU 72.84 73.15 73.07 73.19
oIoU 70.34 70.60 70.63 70.68

Table 11. IoU scores for each expression and the final prediction.
Each IoU score is calculated between the ground truth mask and
the mask predicted by each expression.

D.5. Convergence of each IoU Score.
Fig. 9 shows the convergence of IoU scores for each ex-
pression and the final prediction on the validation set of
RefCOCO+. In the early stages of training, individual ex-
pressions exhibit varied IoU scores; however, after approxi-
mately 250 iterations, all scores converge to similar values.
This convergence occurs because all expressions are opti-
mized using the same learning objectives and are aligned
similarly via the proposed contrastive loss.

D.6. Examples of an Extracted Subject
In Sec 3.1 of the main manuscript, we extract a subject to-
ken from the input textual tokens by applying a linear layer

Figure 8. More qualitative analysis of Latent-VG compared to a
model without any proposed methods (termed as No Latent Exp.).

Figure 9. The convergence of IoU scores for each expression and
the final prediction.

followed by a Gumble-softmax operation and an argmax
function. The linear layer that generates subject logits is
trained end-to-end using the framework learning objectives,
without explicit supervision for the subject. Tab. 12 presents
examples of the extracted subject tokens. In many cases, the
correct subject is successfully extracted, probably because
positioning the extracted token at the beginning of the la-
tent expressions encourages accurate selection. However, in
some failure cases, the extracted token does not correspond
exactly to the true subject but instead captures a crucial key-
word distinguishing the target (e.g., for “elephant in back”,
the token “back” is selected). Moreover, when the true sub-
ject consists of multiple words (i.e., mobile phone), only a
single token (e.g., mobile) is extracted, which may not fully
represent the subject. We plan to explore these limitations



Figure 10. The visualization of segmentation and detection outputs of the proposed Latent-VG.

Correct Examples:

gray cat
bundle of broccoli
sugar powdered donut
sprinkle even with face almost

the zebra on the left in the right hand picture
a small girl starring at something along with her elder sister

a glass with napkins and utensils inside of it sitting near a pizza

Failure Examples:

elephant in back
the man ’s hat

the vehicle on the left of the row
the mobile phone with a number 2125 towards the top right side

Table 12. Examples of the extracted subject in the input sentence.

in the future.

E. Further Discussion
E.1. Limitations
We discuss several limitations in our Latent-VG below:

The Reliance on the Input Expression. Our latent ex-
pressions are initialized from the input textual tokens, lead-
ing to the inevitable dependence on the input textual seman-
tics. To mitigate this, we introduce to the dropout in Sec-
tion 3.1 and select target-related patches as broad regions
beyond the target area in the Visual Concept Injector from
Sec. 3.2. in the main manuscript. Despite these efforts, our
framework remains sensitive to the semantics of the input
text. For example, as shown in Fig. 11, when identifying a
suitcase with a downed zipper, the model must distinguish
subtle differences in zipper locations among four suitcases.
These extremely limited input cues lead our model to an

incorrect suitcase. We tried to capture novel semantics out-
side of the input semantics in the latent representation, but if
the input semantics occupy too small a portion of the target
visual area, our model could select non-targeted objects.

Figure 11. The failure example of our Latent-VG.

The Weakness on the Small Size of Object. Since our
method does not explicitly address the object scale varia-
tions, it performs less effectively on small-scale objects, as
illustrated in Fig. 12. To assess this, we analyze the IoU
scores based on the object size ratio (i.e. target object size
divided by total image size). Our results reveal that perfor-
mance drops significantly for object ratios in 0%− 5% and
5%−10%, showing a limitation in localizing small objects.
We plan to investigate this issue further in future work.

Figure 12. The IoU scores of our methods as the object size ratio.

The Incorrect Subject Selection. As discussed in
Sec. D.6 and shown by the failure examples in Tab. 12, our



Figure 13. The visualization of predicted results of our Latent-VG for the GRES task.

design of subject selection can occasionally extract an in-
correct subject. Although the incorrectly chosen token may
sometimes capture a key distinguishing word (e.g., “left” in
“the vehicle on the left of the row”, as reported in Tab. 12),
this is not our intended outcome. We will explore alterna-
tive strategies for precise subject extraction, such as repre-
senting a subject token by operating a weighted sum over all
textual tokens or incorporating subject supervision obtained
via natural language processing (NLP) tools.

Despite these limitations, our methods achieve state-of-
the-art performances in RIS, REC, and GRES tasks, demon-
strating the effectiveness of our approach in leveraging la-
tent expressions to capture novel semantics outside the input
text.

E.2. Social Impact

Our work may inadvertently propagate biases present in the
training data, leading to unintended ethical concerns. In ad-
dition, the capability to generate highly specified segmenta-
tion by users could be exploited for misinformation or de-
ceptive media manipulation, further highlighting the impor-
tance of careful monitoring and regulation.

F. Visualizations

F.1. Visualization on RIS and REC

In Fig. 10, we present the visualizations of the outputs gen-
erated by our Latent-VG for the referring image segmenta-
tion (RIS) and referring expression comprehension (REC)
on the RefCOCO(+/g) datasets.

F.2. Visualization on GRES

In Fig. 13, we visualize the examples of prediction results of
our Latent-VG on the GRefCOCO dataset. Our framework
demonstrates a strong ability to handle different referring
descriptions, and the no-, single-, and multi-target scenarios
for the same input images.
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