Learning to Generalize without Bias for Open-Vocabulary Action Recognition

Supplementary Material

This supplementary material provides additional details
and further experiments to complement the main paper. The
content is organized as follows:

A. Additional Experimental Details (Appendix § A)
B. Additional Experimental Results (Appendix § B)
C. Discussions (Appendix § C)

D. Broader Impacts and Limitations (Appendix § D)

A. Additional Experimental Details
A.1. Datasets

In this work, we categorize the datasets into in-context
and out-of-context datasets. The videos from in-context
datasets consist of actions with frequent static con-
text, e.g. swimming in the swimming pool, while the
videos from out-of-context datasets contain actions occur-
ring with an unusual static context, e.g. dancing in the
mall [3]. We conduct the experiments on five in-context
benchmarks: Kinectics-400 [8] (K400), Kinectis-600 [2]
(K600), UCF101 [14] (UCF), HMDB51 [10] (HMDB), and
Something-Something V2 [7] (SSv2). Additionally, we
evaluate our approach on two out-of-context benchmarks:
SCUBA [11] and HAT [4].

K400 and K600 are both comprehensive video datasets for
human action recognition. K400 contains 400 action cat-
egories of approximately 240k training and 20k validation
videos collected from YouTube, which covers a wide range
of human actions, including sports activities, daily life ac-
tions, and various interactions, serving as a widely-used ac-
tion recognition dataset for pre-training. The duration of
video clips in K400 varies, with most clips being around 10
seconds long. This diversity in video duration helps mod-
els learn temporal dynamics and context for action recogni-
tion. K600 extends K400 by incorporating 220 additional
new categories, thus enabling the evaluation of zero-shot
learning capabilities on these novel categories.

UCF is a human action recognition dataset collected from
YouTube, and consists of 13,320 video clips, which are
classified into 101 categories. These 101 categories encom-
pass a wide range of realistic actions including body mo-
tion, human-human interactions, human-object interactions,
playing musical instruments and sports. Officially, there are
three splits allocating 9,537 videos for training and 3,783
videos for testing.

HMDB is a relatively small video dataset comprising a di-
verse range of sources, including movies, public databases,
and YouTube videos, and is composed of 6,766 videos
across 51 action categories (such as “jump”, “kiss” and
“laugh”), ensuring at least 101 clips within each category.

The original evaluation scheme employs three distinct train-
ing/testing splits, allocating 70 clips for training and 30
clips for testing of each category in each split.

SSv2 is a temporally focused video dataset across 174
fine-grained action categories, consisting of 168,913 train-
ing videos and 24,777 testing videos showing the objects
and the actions performed on them. These action cate-
gories are presented using object-agnostic templates, such
as “Dropping [something] into [something]” containing
slots (“[something]”) that serve as placeholders for objects.
This dataset focuses on basic, physical concepts rather than
higher-level human activities, which challenges the tempo-
ral modeling capabilities.

SCUBA is an out-of-distribution (OOD) video benchmark
designed to quantitatively evaluate static bias in the back-
ground. It comprises synthetic out-of-context videos de-
rived from the first test split of HMDB and UCF, as well
as the validation set of K400. These videos are created by
superimposing action regions from one video onto diverse
scenes, including those from Place365 [18] and VQGAN-
CLIP [5] generated scenes. Due to the differences in test
sets and background sources, the domain gaps of SCUBA
benchmarks vary. A domain gap is defined as the ratio of ac-
curacies between the original test sets and synthetic datasets
obtained by a 2D reference network, where a higher ratio in-
dicates a greater domain gap with respect to static features.
The UCF-SCUBA and K400-SCUBA used in our experi-
ments consist of 4,550 and 10,190 videos with domain gaps
of 20.49 and 6.09, respectively, whose backgrounds are re-
placed by the test set of Place365.

HAT is a more “realistic-looking” mixed-up benchmark for
quantitative evaluation of the background bias by automat-
ically generating synthetic counterfactual validation videos
with different visual cues. It provides four Action-Swap
sets with distinct characteristics: Random and Same refer
to the swap of actions and backgrounds from different and
same classes, respectively, while Close and Far denote the
swap of videos from a class with similar and very different
backgrounds, respectively. The UCF-HAT benchmark used
in our experiments consists of Action-Swap videos in Close
and Far sets from 5 closest and 30 farthest action categories,
respectively, following the literature [4]. Note that we only
consider videos from the first test split of UCF where all
frames have human masks taking up 5% to 50% of the pix-
els to ensure that sufficient human and background cues are
present in each generated Action-Swap video.



A.2. Evaluation Protocols

For the experimental settings, we follow the previous
works [12, 13, 16] for in-context generalization evaluations
and perform the newly proposed out-of-context generaliza-
tion evaluations described below.

In-context base-to-novel generalization. Under this set-
ting, we divide the entire set of action categories into two
equal halves: base and novel, with the most frequently oc-
curring classes designated as the base classes. We conduct
generalization evaluations on four in-context datasets, i.e.
K400, HMDB, UCF and SSv2, where the models are ini-
tially trained on the base classes within the training splits
of the dataset, and evaluated on both base and novel classes
within the validation splits. Every training split consists of
16 video clips of each base class. During inference within
HMDB and UCF datasets, only the novel class samples in
the first validation splits are used for evaluation. For K400
and SSv2 datasets, the full validation split of each is used
for evaluation here. We report the results of the average top-
1 accuracies for both base and novel classes as well as the
harmonic mean.

In-context cross-dataset generalization. Under this set-
ting, the models are fine-tuned on the training set of K400,
and evaluated on three in-context cross-datasets, i.e. UCF,
HMDB and K600. We report top-1 average accuracies with
performance variances on the three validation splits in case
of UCF and HMDB. For K600, the models are evaluated
on non-overlapping 220 categories with K400, and we re-
port top-1 average accuracies over three randomly sampled
splits of 160 categories.

Out-of-context cross-dataset generalization. Under the
more challenging out-of-context cross-dataset setting, the
models are also trained on K400, and then evaluated on two
out-of-context datasets based on UCF, i.e. UCF-SCUBA
and UCF-HAT. We report the top-1 and top-5 average ac-
curacies over the synthetic counterfactual validation splits
from UCF’s first validation split. We further conduct the
closed-set out-of-context evaluation based on the K400-
SCUBA benchmark and report the harmonic mean of the
accuracies under in-context and out-of-context settings to
comprehensively analyze the generalization of the models.

A.3. Implementation Details

Each training video clip is sampled with 8 frames uni-
formly, and each sampled frame is spatially scaled in the
shorter side to 256 pixels and is processed with basic aug-
mentations like color jittering, random flipping and random
cropping of 224 x 224. We leverage multi-view inference
with 3 temporal and 1 spatial views per video and linearly
aggregate the recognition results. For our Gaussian Weight
Average scheme, we use . = 7 and 02 = 10 for in-context
base-to-novel generalization and 1 = 15 and 02 = 10 for
in-context and out-of-context cross-dataset generalization.

Table 1. Performance comparison (Top-1 Acc. (%)) on HMDB
dataset. We evaluate both in-context and out-of-context recogni-
tion (marked with x) performances. We also report the harmonic
mean (HM) of the results. * and { indicate our implementation
with frozen text learners.

Method HMDB HMDB-SCUBA » HM
X-CLIP 44.6 £5.2 22.5 31.0
Open-VCLIP *  53.8 + 1.5 259 35.0
FROSTER 534+12 23.7 32.8
Ours 54.6 £ 1.1 32.5 40.7

Table 2. Effect of the meta-optimization and Gaussian weight av-
erage (GWA) components in Open-MeDe. A denotes the perfor-
mance gains of different schemes over the baseline. Our Open-
MeDe is highlighted in gray .

Meta

optimization GWA UCF Aycr UCF-SCUBA  Aycr-scusa

X X 78.5 - 28.3
X 83.2 32.1

X 823 30.7
83.9 335

We also adopt decision aggregation with pre-trained CLIP
with the video learner for in-context evaluations. The exper-
iments are conducted on two computing clusters with four
NVIDIA RTX 24G 4090 GPUs.

B. Additional Experimental Results
B.1. Additional Evaluations and Ablation Studies

Out-of-context cross-dataset evaluation on HMDB
dataset. Regarding results shown in Tab. 1, our method
achieves the highest accuracy of 32.5% on HMDB-SCUBA,
and builds up an impregnable lead of +5.7% of HM results
over the nearest competitor, enabling a superior balance for
open-vocabulary generalization.

Effect of individual strategies in Open-MeDe. In Tab. 2,
we conduct ablation experiments to study effects of the
core strategies in Open-MeDe i.e. the cross-batch meta-
optimization and GWA stabilization. Using only meta-
optimization or GWA yields improvements of +4.7%/3.8%
and +3.8%/2.4% over the plain learner on UCF /
UCF-SCUBA, respectively.  This indicates that meta-
optimization substantially enhances generalization across
both open-vocabulary settings in improving model’s robust-
ness, compared to GWA. These two components comple-
ment each other effectively, achieving substantial gains of
+5.4%/5.2%. Their integration leads to consistent im-
provements across diverse scenarios.

Effect of the learning rate . As shown in Tab. 3, we
conduct experiments by setting the learning rate ¢ to dif-
ferent magnitudes. It can be observed that as J decreases,
the general performance remains stable, which validates the
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Table 3. Effect of the learning rate § for meta-optimization. We
choose § = 1.67 x 102 as the default setting.

5 UCF HMDB K600 UCF-SCUBA
1.67x 1071 837 543 73.5 33.2
1.67x 1072 837 545 73.6 334
1.67 x 103 837 546 737 33.5
1.67x107% 83.6 543 73.6 33.0

Table 4. Effect of cross-batch meta-optimization.

Method UCF HMDB K600 UCF-SCUBA
Plain 78.5 50.3 65.9 28.3
Grad Accumulation  78.9 50.5 66.5 28.9
Meta Cross-batch ~ 83.7 54.6 73.7 33.5

Table 5. Effect of the randomness of the batch sampler for
cross-batch meta-optimization. The “similar” sampler denotes
the usage of the most semantically similar classes across adjacent
batches. We evaluate both in-context and out-of-context recogni-
tion (marked with %) performances. HM: harmonic mean. Our
default settings and results are highlighted in gray .

Method Sampler UCF (%) UCF-SCUBAx% (%) HM (%)

N shufffe 785 283 416

Plain initial  77.7(10.8) 282(, 0.1) 41.4(10.2)
shuffle  83.7 335 478

Meta Cross-batch  initial 825 (| 1.2) 289 (| 4.6) 42.8 (1 5.0)

similar  82.7 (1 1.0)  30.9 (| 2.6) 45.0 (. 2.8)

robustness of our cross-batch meta-optimization. However,
a further reduction to 1.67 x 10~* slightly decreases per-
formance across most datasets, suggesting that the optimal
value for § lies at 1.67 x 1073, which is chosen as the de-
fault setting. This value achieves a balanced performance
with the highest or nearly highest scores in each dataset,
particularly noticeable on UCF-SCUBA benchmark.
Effect of cross-batch meta-optimization. To investigate
the efficacy of our cross-batch meta-optimization comple-
menting the main paper, we further evaluate the perfor-
mance using the scheme of gradient accumulation. To
ensure a fair comparison of the total gradient steps with
cross-batch meta-optimization, we accumulate the gradients
over two steps before performing a single parameter update.
As shown in Tab. 4, the gradient accumulation technique
demonstrates modest improvements over the plain method
for both in-context and out-of-context benchmarks. This in-
dicates that the strength of our meta-optimization approach
lies in its ability to enhance known-to-open generalization,
rather than doubling the batch size for a single parameter
update.

Effect of randomness of the batch sampler for cross-
batch meta-optimization. To verify the efficacy of con-
structing tasks across batches with different inherent label
distributions, we further conduct several additional studies

Table 6. Effect of the batch size of tasks and samples for cross-
batch meta-optimization. Our default settings and results are high-
lighted in gray .

Batchsize UCF HMDB K600 UCF-SCUBA

Task  Sample

2 8 83.5 54.3 73.2 335
4 4 83.5 54.3 733 334
4 8 83.7 54.6 73.7 335
4 16 83.8 54.6 73.9 33.6
8 8 83.8 54.8 73.9 33.6

about the sampling randomness during cross-batch meta-
optimization. As shown in Tab. 5, the randomness of the
batch sampler is indeed an important factor to bring out
the best of our cross-batch meta leaner, which improves the
overall generalization greatly (+5.0% of harmonic mean)
especially for out-of-context performance (4+4.6% on UCF-
SCUBA). However, Plain learner shows insensibility to the
sampling randomness, experiencing negligible growth of
generalization performance. Without shuffling the batch
sampler, our method still outperforms the non-shuffle plain
learner by +1.4% of HM results. By using the most seman-
tically similar classes across support and query batches, it
brings a relative performance decline of 0.99% and 2.64%
on UCF and UCF-SCUBA, respectively. We speculate that
it amplifies inter-task semantic distribution shifts hinder-
ing cross-task generalization. In contrast, the default en-
sures consistent and balanced distributions of both inter-
and intra-task variance.

Effect of the batch size of tasks and samples. In Tab. 6,
we evaluate the performance with different batch sizes of
the task and data for cross-batch meta-optimization. Each
task consists of two data batches, one for the support set
and one for the query set. From the results, we observe that
increasing the batch size leads to slight improvements in
performance, especially for K600. While larger batch sizes
provide marginal improvements, they may not justify the
increased computational cost. Thus, the default setting pro-
vides an effective balance between performance and com-
putational efficiency.

Effect of the CLIP ensemble. In Tab. 7, we evaluate the
effectiveness of the CLIP ensemble in the weight space
and decision space, with the ensemble ratios all set to 0.5.
The results demonstrate that both types of CLIP ensem-
ble improve performance in in-context evaluations, with
the prediction-based ensemble yielding the most consis-
tent gains across all methods. This suggests that inte-
grating CLIP predictions effectively leverages the strengths
of CLIP, leading to significant performance enhancements,
particularly over the naive approach. However, there is a no-
ticeable drop on UCF-SCUBA for the out-of-context gen-
eralization, indicating that the static generalization derived
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Table 7. Effect of the CLIP ensemble. We evaluate the perfor-
mance of integrating the CLIP ensemble within the weight and

decision spaces. Naive denotes applying only the video learners

for evaluations without further CLIP ensemble.

Method CLIP ensemble UCF HMDB K600 UCF-SCUBA
Naive 78.5 50.3 65.9 28.3
VCLIP Weight 80.1 51.9 71.0 26.6
Prediction 80.3 52.1 71.2 27.0
Naive 81.4 532 71.5 30.0
Open-VCLIP  Weight 83.3 53.8 73.0 28.9
Prediction 834 54.0 73.2 29.9
Naive 83.3 54.3 73.5 335
Open-MeDe  Weight 83.6 54.4 73.6 29.9
Prediction 83.7 54.6 73.7 32.0

Table 8. Effect of mitigating static bias in action recognition with
various training strategies. We report the Top-1 Acc. (%) and
harmonic mean (HM) of both in-context (IC) and out-of-context
(OC) generalization performance for closed-set and zero-shot ac-
tion recognition. X indicates that the methods are not capable of
zero-shot action recognition.

K400 (closed-set) UCEF (zero-shot)

Method Pretrain Training Strategy Ic oC HM IC oC HM
BE[15] ImageNet Debiasing 739 419 535 X X X
FAME [6] K400 Debiasing 73.8 490 589 X X X
StillMix [11]  ImageNet Debiasing 739 434 547 X X X
DEVIAS [1]  VideoMAE Disentangle 773 51.8 62.0 X X X
VCLIP CLIP Plain 80.1 424 554 785 283 416
Open-MeDe CLIP Meta-optimization 81.5 46.6 593 839 335 479

from the CLIP ensemble can adversely affect the model’s
robustness and overall generalizability.

Effect of static debiasing strategies. In Tab. 8, we com-
pare Open-MeDe with several baselines especially designed
for mitigating static bias in action recognition, including
three scene-debiasing methods (BE [15], FAME [6] and
StillMix [11]) and a state-of-the-art action-scene disentan-
glement method (DEVIAS [1]). Note that DEVIAS lever-
ages additional scene labels for disentangled video repre-
sentation. As can be seen from the results, while FAME
and DEVIAS perform well in the K400 closed-set out-of-
context evaluation against static bias, they fall short in in-
context performance and lack zero-shot inference capabil-
ity. In contrast, our Open-MeDe, despite not employing ex-
plicit debiasing or disentangled action modeling, achieves
favorable out-of-context generalization with a balanced har-
monic mean. This highlights its robust generalizability
across both in-context and out-of-context scenarios, partic-
ularly excelling in zero-shot generalization.

Analysis of class-wise performance. In Fig. 1, we further
present the improvements of our Open-MeDe over Open-
VCLIP on out-of-context UCF-SCUBA across 22 novel
classes. It can be observed that Open-MeDe wins across
19 of the 22 classes. The improved categories involve lo-
calized motions, where most of the static content is misin-
terpreted by irrelevant context noise on UCF-SCUBA. We

+19.4 Open-MeDe vs. Open-VCLIP on UCF-SCUBA

+61 457 456 46 .o

A Score (%)

Basketball

1417 +1.6 +15 +1.3 406 405

+ Ipole vault

c o
i £

=

Fencing
Skiing

Long Jump

Tennis Swing

Ice Dancing
Surfi

Golf Swing

Rope Climbing

Trampoline Jumping

Floor Gymnastics
Soccer Jugglin

Walking With Dog

Figure 1. Comparison between Open-MeDe and OpenVCLIP
across 22 classes on UCF-SCUBA.

Table 9. Comparison of the training cost. We report the results of
K400 training on four GPUs (24G RTX 4090). We maintain an
equal batch size of 8 videos per GPU across all models.

Method Params (M) FLOPs (G) CUDA mem. (GB) Epoch time (min)
VCLIP 149.62 152.11 14.14 110.10
Open-VCLIP 149.62 152.11 20.09 109.26
FROSTER 299.77 152.11 21.07 80.95
Open-MeDe 149.62 152.11 16.59 74.33

attribute these gains primarily to its effectiveness in static
debiasing and capturing fine-grained dynamics. However,
its performance is slightly compromised in cases involving
team sports or rapid shifts in spatial locations.

B.2. Training cost analysis

In Tab. 9, we show the training cost analysis of our ap-
proach and compare it with other methods under identical
training conditions. All approaches utilize the same video
learner, ensuring equal GFLOPs. Our Open-MeDe achieves
the lowest CUDA memory usage at 16.59 GB and a signif-
icantly reduced epoch time of 74.33 minutes, compared to
other methods. This demonstrates its efficiency in terms of
training time and memory consumption, providing a cost-
effective solution without compromising on computational
complexity.

B.3. Visualization Results

As shown in Figs. 2 to 6, we present additional visualization
comparisons of Open-VCLIP and the proposed framework
under in-context and out-of-context scenarios. Overall, our
approach effectively attends to more motion-relevant re-
gions, achieving higher confidence scores and correct pre-
dictions in most cases. This demonstrates its greater relia-
bility, and robust generalizability in open-vocabulary action
recognition tasks.

C. Discussions

In this part, we further elucidate the core distinction be-
tween the proposed method and similar paradigms through
comparative analysis.

Meta learner vs. Plain learner. As discussed in the main
paper, Open-MeDe formulates the video learner into a meta
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learner by employing the cross-batch meta-optimization
scheme that mimics sequences of known-to-open general-
ization tasks, enhancing adaptability to unseen data through
iterative virtual evaluations during training. Plain learners,
such as those employing standard fine-tuning paradigms
on CLIP-based video learners, are typically straightforward
and focus on in-distribution class-specific knowledge. Fol-
lowing a traditional gradient descent over a single objec-
tive function can lead to a narrower optimization landscape
prone to overfitting. Therefore, plain learners can gain rea-
sonable in-context performance but struggle to generalize
to novel and out-of-context scenarios due to the tendency to
overfit in training data and short-cutting static cues.

In contrast, our meta learner is designed to derive the
training towards learning more generalizable features by
optimizing not just for class-specific knowledge but for
adaptability across diverse known-to-open tasks. It explic-
itly counteracts inherent known and static biases by lever-
aging feedback from virtual evaluations, ensuring the video
learner does not over-rely on vulnerable static cues. By al-
ternating between meta training (w.r.t. support data) and
meta testing (w.rt. query data), the meta learner ensures
smoother optimization trajectories and enhanced robustness
in a cost-effective manner. The episodic training of the
meta learner fosters adaptability across varying class dis-
tributions, making it highly effective for open-vocabulary
tasks.

Meta-optimization vs. Train-validation. In our meta-
optimization framework, training involves two key stages:
meta training (on support data) and meta testing (on query
data). The query data evaluation provides generalization
feedback via loss gradients, enabling the learner to adjust
the learning trajectory to prioritize generalizable features.
This iterative approach inherently targets learning to gener-
alize and mitigates overfitting by encouraging robust learn-
ing across diverse distribution shifts. Conversely, the train-
validation paradigm typically partitions data into training
and validation subsets, optimizing model parameters by
minimizing errors on the training data while evaluating per-
formance on a held-out validation set for hyper-parameter
tuning or early stopping. This paradigm monitors the gen-
eralization performance indirectly by balancing the perfor-
mance between training and validation data without explic-
itly improving the open-vocabulary generalization capabil-
ity toward novel data.

Both paradigms leverage the feedback to refine model
training, where the feedback of meta-optimization comes
from query evaluations, while in train-validation, it arises
from validation performance. Additionally, the feedback of
train-validation is aggregated at coarser intervals, limited to
hyper-parameter adjustment on constant training-validation
splits. It is worth noting that the meta-optimization provides
granular, iterative feedback during training, manifesting as

loss gradients to refine generalizable representation learn-
ing by dynamically constructing tasks with support-query
splits. Therefore, the proposed meta-optimization frame-
work provides a more robust and explicit mechanism for
adapting to novel data, setting a new baseline for open-
vocabulary action recognition.

Cross-batch meta-optimization vs. Gradient accumula-
tion. As introduced in the Open-MeDe framework, the
proposed cross-batch meta-optimization takes inspiration
from meta-learning with minimal modification to the stan-
dard training setup, which leverages adjacent mini-batches
in training, treating one as the support batch (meta training)
and the subsequent as the query batch (mefa testing). It aims
to explicitly promote generalization by evaluating how well
the model can adapt its learned parameters to open or dy-
namically different data distributions, thereby mitigating in-
herent and static biases in the video learner. When it comes
to the gradient accumulation technique, by simulating large
batch training, it aggregates gradients over multiple mini-
batches and applies the update after a predefined number
of steps, emphasizing the efficiency of stabilizing training
and improving convergence on hardware-constrained sce-
narios. However, it primarily improves training stability
without inherently targeting adaptability and enhanced gen-
eralization. Therefore, cross-batch meta-optimization dif-
fers fundamentally from gradient accumulation in its goal
and methodology, which achieves a superior balance be-
tween specialization and generalization.

Meta-debiasing with MVSGG [17]. 1) Objective w.rt.
mitigating biases. MVSGG addresses certain conditional
biases within video scene generation tasks, targeting long-
tailed data issues. Here, we tackle a ubiquitous challenge
for video understanding, i.e. mitigating static bias present
in video learners. 2) Methodology w.r.t. meta-optimization.
MVSGG emphasizes on constructing various types of con-
ditional biases within data at each training epoch, with its
meta-optimization employed per epoch against specific bi-
ases. We perform meta-optimization densely in iterations
with a diverse distribution of tasks. The evaluation on a
subsequent batch explicitly simulates known-to-open gen-
eralization and mitigates static bias implicitly. 3) Applica-
tion scope w.r.t. generalization. MVSGG enhances model’s
generalization under closed-set settings against conditional
biases within training data. Notably, we achieve more ro-
bust open-vocabulary generalization beyond training data,
where MVSGG is insufficient to our requirements. 4) Com-
putational cost w.x.t. task construction. MVSGG requires
careful organization of training data, significantly increas-
ing computational cost. Remarkably, our method incurs
no additional computational overhead compared to standard
training by effortlessly utilizing cross-batch data.

Gaussian self-ensemble with PromptSRC [9]. Our GWA
is related to PromptSRC with two key differences: 1) Ob-



jective w.r:t. implementation. We aim to achieve a generic
optimal solution for video learners by assigning different
weights to learner’s parameters during optimization, while
PromptSRC focuses on regularizing prompt learning to re-
duce overfitting with frozen backbones. 2) Patching strat-
egy w.rt. start point. Our GWA starts after fine-tuning
the pre-trained weights of the learner (e.g., CLIP weights),
which exhibits substantial static-related knowledge. With
the purpose of mitigating static bias, the initial patching
weights are sampled from low Gaussian probabilities. How-
ever, the start point of PromptSRC is randomly initialized,
given the prompt learning framework, where lower weight
assignments guarantee the task-specific knowledge.

D. Broader Impacts and Limitations

Broader Impacts. The proposed Open-MeDe framework
for open-vocabulary action recognition introduces substan-
tial advancements in several key aspects, underscoring its
broader impact on both research and real-world applica-
tions: 1) By addressing the overfitting to static cues inher-
ent in pre-trained models like CLIP, Open-MeDe introduces
innovative solutions for robust generalization. Its combina-
tion of meta-optimization and Gaussian self-ensemble sta-
bilization enables robust performance in challenging out-
of-context scenarios, providing a pathway for video learn-
ers to bridge the gap between image and video modali-
ties effectively. 2) Unlike previous approaches reliant on
CLIP regularization, Open-MeDe reduces computational
overhead and efficiently balances class-specific learning
with generalization capabilities, leveraging a cross-batch
meta-optimization approach. 3) Open-MeDe demonstrates
remarkable adaptability across diverse scenarios, includ-
ing base-to-novel, cross-dataset, and out-of-context evalu-
ations. Its model-agnostic design enables seamless integra-
tion with various CLIP-based video learners, enhancing per-
formance across parameter-efficient fine-tuned, partially-
tuned, and fully-tuned video learners. This flexibility sig-
nificantly broadens its utility, making it a versatile tool
for tasks requiring robust generalization without exten-
sive domain-specific tailoring. 4) Extensive experiments
demonstrate the state-of-the-art results achieved by our
Open-MeDe, highlighting its role in advancing general
video understanding. Our framework can empower many
downstream applications, such as video-based surveillance
and security, autonomous vehicles, human-computer inter-
action, etc.

Limitations. Despite achieving promising open-vocabulary
generalization with our framework, the out-of-context sce-
narios remain challenging and constrained by the reliance
on temporal and static feature alignment. Specifically, sce-
narios with extreme domain shifts (e.g., SCUBA and HAT
benchmarks) show significant performance gaps. However,
the residual influence of static visual cues persists, partic-

ularly in complex video backgrounds and more compact
foregrounds. Incorporating stronger, explicitly targeted de-
biasing strategies, such as adversarial learning or counter-
factual data augmentation, may further enhance robustness,
which will be explored in our future work.
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Inputs
Class: Bench Press

V)

Open-VCLIP
Pred: Bench Press
Score: 26.40

o

Ours
Pred: Bench Press
Score: 31.65

Figure 2. Visualizations of attention maps and predictions for “Bench Press” in the in-context setting. Both Open-VCLIP and our proposed
framework correctly predict the action, while ours achieves a higher score. Additionally, our framework demonstrates enhanced attention
to the key elements associated with the action, which highlights its effectiveness in capturing nuanced and discriminative features, leading
to more confident predictions.

Inputs
Class: Playing Piano

Open-VCLIP
Pred: Playing Piano
Score: 25.16

o

Ours
Pred: Playing Piano
Score: 26.17

Figure 3. Visualizations of attention maps and predictions for “Playing Piano” in the in-context setting. Our method emphasizes the subtle
movements of the action rather than redundant visual appearances, demonstrating its effectiveness of capturing critical motion cues.
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Ours
Pred: Golf Swing
Score: 22.02

Figure 4. Visualizations of attention maps and predictions for “Golf Swing” in the out-of-context setting. Our method successfully classifies
the action and effectively captures key visual cues associated with the motion, demonstrating the improved robustness. However, Open-
VCLIP misclassifies the action as “Juggling Balls” due to its large static bias.

Inputs
Class: Horse Riding

Open-VCLIP
Pred: Archery
Score: 16.23
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Ours
Pred: Horse Riding
Score: 21.15

Figure 5. Visualizations of attention maps and predictions for “Horse Riding” in the out-of-context setting. Our method outperforms
Open-VCLIP by accurately attending to critical dynamic information specific to the true action, showcasing its robustness and reliability
in discerning action-relevant features under challenging out-of-context scenarios.
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Figure 6. Visualizations of attention maps and predictions for “Diving” in the out-of-context setting. Both methods struggle to classify
the action correctly, suggesting more room for improvement under this challenging scenario. Despite the incorrect prediction, our method
reflects a better focus on motion-relevant areas, which indicates its effectiveness of mitigating static bias.
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