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A. Overview

In this supplementary material, we present:

• More detailed analyses of DataTailor (Section B).
• More experimental details (Section C).
• Additional Experiment Analyses (Section D).

B. DataTailor Framework

B.1. Principle Definition

To avoid the computational infeasibility of the impact of
samples on downstream task performance, we define three
principles based on the geometric statistical properties of
the samples to serve as practical approximation for assess-
ing the value of multi-modal instructions:
Definition B.1 (Informativeness). It quantifies the sam-
ples’ difficulty for downstream tasks within latent space.
The sample difficulty is related to its feature distribution di-
versity. A sample s ∈ S, S ⊆ D is high-informativeness if
its token-level feature distribution is more diverse, indicat-
ing it contains a wider variety of information at the token
level. By prioritizing such samples during training, models
can learn more robust representations, thereby improving
inference accuracy on downstream tasks.

Intuitively, simple samples often contain redundant in-
formation (e.g., images with large areas of meaningless
background or answers with repetitive descriptions). In
such cases, the model can “trickily” focus on a subset of in-
formation to complete the task. Due to the high similarity of
tokens in the sample, the feature matrix columns (or rows)
exhibit strong linear dependence, meaning the matrix has a
low rank and contains significant redundancy. According to
Singular Value Decomposition (SVD), smaller singular val-
ues decrease significantly, and larger ones become dispro-
portionately larger, leading to lower singular value entropy.
Mathematically, if the feature matrix M has low rank, its
singular value matrix Σ can be represented as:

M = UΣV (1)

where the smaller singular values in Σ approach zero, while
the larger singular values dominate. The singular value en-
tropy (SVE) is defined as the entropy of normalized singular
values [5], which is computed as:

SVE = −
r∑

i=1

p(σi) log p(σi) (2)

where σi is a singular value, p(σi) is the normalized proba-
bility distribution of the singular values, and r is the rank of
the singular value matrix. Since many of the singular values
are close to zero, the entropy is low, reflecting the simplic-
ity of the sample. In contrast, when the feature matrix of
a sample is more information-rich and closer to full rank,
singular values contribute more evenly, leading to higher
entropy, which indicates a more complex sample.

Therefore, singular value entropy serves as a practical
approximation of sample informativeness, enabling the se-
lection of more challenging samples that encapsulate a di-
verse range of information for downstream tasks.
Definition B.2 (Uniqueness). It measures deviation from
local data density. A sample s is high-uniqueness in neigh-
borhood N (s) if:

min
s′∈N (s)

∥s− s′∥ ≥ δ · diam(N (s)) (3)

where δ ∈ (0, 1) thresholds the relative margin and diam(·)
is the diameter of the subset within the intra-cluster space.
Due to local density constraints, models are forced to learn
non-degenerate decision boundaries [6], which ensures the
distinction of sample distributions and improves adversarial
robustness. According to Lemma 2.4 [3], maximizing the
Euclidean intra-cluster margins achieves this through geo-
metric packing in ℓ2-space, which is equivalent to sampling
along the data manifold boundary to reduce redundancy be-
tween samples thereby improving training robustness [11].
It is worth noting that the dynamic computation based on
the selected sample may be influenced by the greedy side
effects during the selection process, making it difficult to
achieve a global optimal solution.

Therefore, the static Euclidean distance between all
neighborhood samples in the intra-cluster space can approx-
imately capture data density of sample sets, allowing the
selection of unique samples for continual performance im-
provement. Given a sample s and its neighbor samples
xj ∈ C, the Euclidean distance di,j can be calculated as
follows:

di,j = ∥pj − pi∥2 (4)

where a smaller Euclidean distance of two samples in the
latent space indicates that these samples are highly similar,
leading to a lower uniqueness value.
Definition B.3 (Representativeness). It ensures samples
adhere to population-level statistics. A sample s is repre-
sentative if its feature vector ϕ(s) satisfies:

W1(PS ,PD) ≤ γ (5)



where W1 is Wasserstein-1 distance, PS is average feature
of the subset, and PD is average feature of the global dis-
tribution. By incorporating the Wasserstein-1 constraint, it
minimizes domain shift and stabilizes the dynamics of gra-
dient descent [4]. According to Proposition 1 [16], cosine
similarity to cluster centroids approximates W1-optimal
transport under spherical normalization. Therefore, the sim-
ilarity distribution from the inter-cluster space can approxi-
mately capture the alignment between samples and the over-
all data distribution for minimizing domain shift. The rep-
resentativeness value can be measured by the cluster density
of the sample, which is commonly estimated using the sim-
ilarity distribution between cluster centroids:

τ ci =
1

K − 1

K∑
k ̸=c

exp(sim(pk,pc)) (6)

where pc is the feature of the cluster centroid that is cal-
culated by the average feature of samples in the cluster.
Specifically, high similarity indicates that the cluster con-
taining the sample is well-aligned with other clusters, mak-
ing it a strong representative of the overall data distribution.

B.2. Adaptive Data Proportion for Data Selection
To adapt to various task complexities within multi-modal
datasets, we introduce adaptive proportion of selected data
for each task. The challenge stems from the fact that task
difficulty is inherently difficult to assess directly. We ob-
serve that data lacking directional diversity causes the gen-
erated trajectories to collapse into a limited subspace domi-
nated by a few principal components. This reflects the com-
plexity of the task, highlighting the need for more training
data to enhance the robustness of MLLMs. Specifically,
given the feature matrix M of a sample si, the largest sin-
gular value calculation relies on Singular Value Decompo-
sition (SVD):

M = UΣV T ,Σ = {σ1, ..., σr} (7)

where Σ is the singular value matrix and r represents the
singular value matrix rank of each sample. Here r = Li

since the sample feature dimension d is much larger than
the sample token length Li and σi represents each singular
value.
Definition B.4 (Largest Singular Value Ratio). The
largest singular value ratio (LSVR) is defined as the ratio of
the maximum singular value to the sum of singular values.
LSVR captures the distribution of significant eigenvectors
in a particular direction and reflects the task difficulty for
training robustness.

LSVR =
σmax∑r
j=1 σi

(8)

where σmax denotes the dominant singular value. When the
LSVR becomes significantly large, it indicates insufficient

variation in eigenvectors along the principal direction as fol-
lows:

σmax∑r
i=1 σi

≫ 1

r
(9)

This indicates that information is concentrated in specific
singular value directions in the latent space. Such spec-
tral imbalance in singular values reduces the effective di-
mensionality of learned representations, meaning that less
knowledge can be extracted from individual samples. Con-
sequently, such difficult tasks with larger LSVR require
higher data selection proportions to ensure sufficient learn-
ing. Specifically, we compute the average of the LSVR for
all samples in the task as follows:

xp = avg(
σmax∑r
j=1 σj

) (10)

To amplify the contribution of task difficulty to data selec-
tion, we square the average largest singular value ratio and
normalize it based on the number of samples corresponding
to each task, yielding the data selection ratio as follows:

kp =
x2
p · |Sp|∑
q x

2
q · |Sq|

· k (11)

where |Sq| is the corresponding sample number of each
task. Then, we adjust the data selection rate of each task
from k to kp to achieve task-adaptive proportions. Once
the data selection ratio for each task is determined, we uti-
lize the synergistic sample value from DataTailor to perform
collaborative multi-modal data selection for each task.

B.3. Cross-Modal Domain Clustering
B.3.1. Algorithmic Formulation
The clustering pipeline commences with inter-sample
affinity quantification via ℓ2-norm distance measurements
within each initial category. Starting with all nodes as indi-
vidual clusters, we iteratively merge the pair (A,B) exhibit-
ing the minimal increase in Sum of Squared Errors (SSE) to
construct a dendrogram:

A,B = argmin
A,B∈P

∆SSE(A,B) (12)

where P denotes the partition of nodes into distinct clus-
ters. The SSE increment from merging clusters A and B is
defined as:

∆SSE(A,B) =
nAnB

nA + nB
∥µA − µB∥2 (13)

with nA, nB representing cluster sizes and µA,µB their
centroids. This criterion minimizes intra-cluster variance
growth. To theoretically characterize the merging behav-
ior, we formalize a key monotonicity property inherent to
Ward’s algorithm.



Theorem 1 (SSE Monotonicity in Ward’s Method). For a
hierarchical merging process {Pk}n−1

k=0 under Ward’s algo-
rithm (where P0 contains singleton clusters), the total SSE
increment satisfies the non-decreasing property:

∆SSE(Pk) ≥ ∆SSE(Pk−1), ∀k ≥ 1,

where ∆SSE(Pk) denotes the incremental SSE from merg-
ing Pk−1 to Pk.

This monotonic progression ensures that earlier merges
correspond to more natural cluster unions, while later
merges sacrifice increasing amounts of variance. Lever-
aging this property, we define a threshold-based partition-
ing rule to extract clusters from the dendrogram hierar-
chy. A dendrogram T = (V,E) consists of leaf nodes
Vleaf = {s1, ..., sn} and internal nodes, which serve as
merge points annotated with ∆SSE values. Given a thresh-
old T = λ · ∆SSE(Pn−1), the optimal partition is deter-
mined by:

P∗ = max {k | ∆SSE(Pk) ≤ T}

B.3.2. GPU-Accelerated Distance Computation
For efficient pairwise distance measurement between n
samples in Rd, we implement a parallelized ℓ2-norm com-
putation framework using CUDA-optimized matrix oper-
ations. The distance matrix D ∈ Rn×n can be derived
through the algebraic identity, which:

Dx,y =
√
Sx,x + Sy,y − 2Sx,y (14)

where X ∈ Rn×d represents the feature matrix con-
taining n samples, and S = XXT ∈ Rn×n represents
the similarity matrix. Our kernel-based implementation
achieves O(n2d/m) theoretical speedup through massive
parallelization across GPU cores, effectively transforming
an originally O(n2d) complexity operation into a highly
parallelizable matrix multiplication task. In addition, we
use the parallel pipeline strategy to extract feature vectors
of the feature matrix while calculating the ℓ2-norm distance
between sample features for efficiency.

B.3.3. Optimized Hierarchical Clustering Merge
To address the quadratic complexity inherent in conven-
tional hierarchical clustering, we implement a memory-
efficient variant of the nearest-neighbor chain algorithm.
This optimization framework features:
• Randomized stack initialization with cluster prototypes
• Iterative nearest-pair identification via stack
• In-stack merging with O(n) per-operation cost, where

each node undergoes O(1) amortized operations.
The proposed acceleration strategy reduces computa-

tional overhead to O(n2) while preserving the theoretical
guarantees of Ward’s method. By optimizing the clustering

Threshold λ w/o clustering 0.05 0.1 0.25 0.5

MLLM Rel. 98.1% 99.8% 101.3% 100.0% 98.5%

Table 1. The analysis of different similarity thresholds for cross-
modal domain clustering in extrinsic value estimation.

process, the time consumption of the clustering was accel-
erated by 90×, resulting in significantly improved perfor-
mance.

B.3.4. Threshold Parameter Analysis
Since the quality of clustering is critical for the domain-
based adaptive data proportion in DataTailor, we further ex-
plore the effect of dynamic threshold to cross-modal domain
clustering on the multi-modal data selection in Table 1. The
clustering threshold determines the cluster size based on the
dataset’s sample distribution. Therefore, setting it close to
the overall data selection proportion ensures an appropri-
ate size of clusters that effectively captures sample relation-
ships. Our experiments reveal that low or high thresholds
compromise the constraints on the uniqueness or represen-
tativeness of high-quality samples, leading to lower perfor-
mance of DataTailor. Thus, we set the appropriate threshold
λ as 0.1 for cross-modal domain clustering, which is close
to the total data selection proportion.

B.4. Balance between Three Principles

Since multi-modal samples exhibit varying structures, we
propose an adaptive weight to combine the three princi-
pal values. We restate the underlying principles behind the
three properties to show their effectiveness: (a) Informa-
tiveness. It determines external relationships due to its core
training contributions. Because MLLMs rely on token-level
inputs, the SVD of token feature space reveals the sam-
ples’ contribution to the MLLM. That’s why we use singular
value entropy to reflect the value of samples for generaliza-
tion. (b) Uniqueness. For repeated samples, their unique-
ness is adjusted during selection based on the distribution
of chosen points by normalization, ensuring duplicates are
treated differently. (c) Representativeness. It aims to isolate
undesired noisy samples that may have a high uniqueness
score, while general noisy data can be identified by its lower
informativeness (i.e., average 0.297 in clusters).

In general, it is important to balance the above three
principles to select data collaboratively. On the one hand,
we explore various ratios of these two external values (i.e.,
uniqueness and representativeness) in Figure 2. The smooth
performance transition (less than 2%) near the 1:1 ratio sug-
gests that the trade-off between them remains stable. There-
fore, we select the 1:1 ratio as the optimal value for collabo-
ration. On the other hand, we use adaptive weights between
the information values and the two values for the varying
instruction rounds of the samples in the dataset.



V Uni : V Rep 0:1 0.5:1 1:1 1:0.5 1:0

MLLM Rel. 99.6% 100.5% 101.3% 100.3% 99.5%

Table 2. Balance between uniqueness and representation in
DataTailor for data selection of MLLMs.

C. More Experimental Details

C.1. Implementation Details
Following prior research [14, 18] and each dataset scale,
we keep 5% as the data proportion (0.2k) for data selec-
tion on MiniGPT4-Instruction [23] and 7.5% as the data
proportion (50.0k) for data selection on on LLaVA-1.5-
mix-665k [12] for the standard setting. In the transfer-
ability analysis, we uniformly set 5% as the data propor-
tion (12.3k) for data selection on mPLUG-Owl-7B-264k-
Instructions [21] and 5% as the data proportion (34.7k) for
data selection on Bunny-695k [8]. During the data selection
process, we retain all parameters from the original model
but freeze all gradients. DataTailor evaluates the values
of the three principles for multi-modal samples using the
initialized features of the pre-trained model. This allows
DataTailor to select high-quality samples while efficiently
maintaining strong transferability.

During data selection in DataTailor, we balance the
uniqueness and representativeness of different clusters.
First, we normalize uniqueness and representativeness val-
ues across clusters by removing the influence of spatial dis-
tribution and cluster size. Next, we standardize the impact
of the average sample value across clusters. Specifically,
within the same task, we uniformly scale informativeness,
uniqueness, and representativeness metrics to a [0, 1] range
to ensure consistent distribution alignment. By harmonizing
these normalized values across samples, we enable collabo-
ration among Informativeness, Uniqueness, and Represen-
tativeness values. This methodology fosters balanced met-
ric collaboration in our adaptive data selection framework,
ensuring proportional consideration of all three criteria.

During fine-tuning, we apply the LoRA strategy [9] to
fine-tune each dataset and its subsets from various data se-
lection methods due to the limited GPU resources. For
LLaVA-v1.5-7B, we use 4*3090 GPUs for fine-tuning,
where the batch size of each device is set to 12 and the
training epoch is set to one epoch. For MiniGPT-4-7B, we
use 1*A6000 GPU for fine-tuning, where the batch size of
each device is set to 12 and the training epoch is set to 5
epoch. During fine-tuning, we only distinguish the dataset
scale through various data selection methods and keep all
other training parameters consistent for a fair comparison.

C.2. Candidate Datasets Details
MiniGPT4-Instruction. It contains approximately 3,500
instruction pairs, each consisting of an image and a corre-

Methods Selected Data Evaluation MLLM Rel.Informativeness Uniqueness Representativeness
IFD (7.5%) 32.3 0.341 30.3 87.3%
INSTAG (7.5%) 30.9 0.347 34.4 96.4%
LESS (7.5%) 34.0 0.314 33.3 94.3%

+V Inf
i (7.5%) 34.5 0.348 34.8 98.0%

+V Uni
i (7.5%) 33.4 0.364 34.5 97.3%

+V Rep
i (7.5%) 33.9 0.343 35.0 97.5%

DataTailor (7.5%) 34.8 0.358 34.9 100.1%

Table 3. Quantitative Valuation of Three Principles. All setups are
on the model of LLaVA-v1.5-7B and the dataset of LLaVA-mix-
665K for both data selection and MLLM training.

sponding detailed description. The correctness of each im-
age description is manually verified to ensure high quality.
LLaVA-v1.5-mix-665k. This is currently the most exten-
sive multimodal instruction dataset, encompassing instruc-
tion data across a wide range of tasks. It contains a variety
of datasets: VQA [2], OCR [15], region-level VQA [10], vi-
sual conversation [13] and language conversation [1] data.
For all datasets, QA pairs from the same training image are
merged into a single conversation, and excessively long data
is filtered out to improve training efficiency. As a result, this
process yields 665k instruction pairs across 13 tasks.
mPLUG-Owl-7B-264k-Instructions. It gathers pure text
instruction data from two distinct sources: 52k data from
the Alpaca [17] and 54k from the Baize [19]. Addition-
ally, it involves 158k multi-modal instruction data from
visual conversations in the LLaVA dataset [13]. In this
way, it incorporates both pure text instruction data and mul-
timodal instruction data, demonstrating that DataTailor is
well-suited for diverse data selection tasks.
Bunny-695k. It primarily utilizes SVIT-mix-665k [22],
replacing ShareGPT-40k [1] with WizardLM-evol-instruct-
70k [20] to create Bunny-695k. Compared to LLaVA-
665K, this dataset contains more complex multi-modal in-
structions, enabling the evaluation of DataTailor’s ability to
transfer to more intricate multi-modal data selection.

D. Additional Experiment Analyses

D.1. Quantitative Valuation of Three Principles

To quantitatively investigate how DataTailor addresses each
of the three principles for data selection, we designed three
experimental settings to assess them. Here we show the
detailed metric values for DataTailor and other baselines on
three experimental setups in Table 3.

D.2. More scalable MLLMs Results

Further, we apply DataTailor to larger and newer back-
bones (i.e., Qwen-2-VL-7B & 72B) for more robust evalu-
ation in the Table 4. Since Qwen’s data is closed-source, we
fine-tune on the open Virgo dataset [7]. Similarly, we ob-
serve that DataTailor exhibits competitive performance with
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Figure 1. Quality score (y-axis, higher is better), accuracy
score (x-axis, higher is better), and the stability (circle sizes,
smaller is better) of MLLMs’ responses on OwlEval benchmark.
We set the data selection ratio for each method to 7.5%.

Methods Dataset MMMU MathVerse MathVision MLLM Avg.
QVQ-72B-preview - 66.0 41.5 38.2 48.6
InternVL2.5-78B - 70.0 39.2 32.2 47.1
Qwen2-VL-7B Virgo(100%) 46.7 36.7 24.0 35.8

w/ random Virgo(15%) 46.7 32.5 23.4 34.2
w/ DataTailor Virgo(15%) 50.1 34.8 23.8 36.2

Qwen2-VL-72B Virgo(100%) 65.0 48.1 38.6 50.6
w/ random Virgo(15%) 59.4 43.7 36.8 46.6
w/ DataTailor Virgo(15%) 63.0 46.2 40.3 49.8

Table 4. The scalable results on math and reasoning benchmarks
of DataTailor with more scalable MLLMs.

only 15% data (36.2 v.s. 35.8 of full data), outperforming
other open-source MLLMs baselines.

D.3. Instantiation Comparisons of Three Principles
To fully explore the characteristics of valuable samples that
are meaningful for downstream tasks, we further present
a few instantiation comparisons of sample characteristics
from the three principal perspectives in Figure 2. The left
side shows the data preferred by DataTailor, and the right
side shows the remaining data.

From the perspective of informativeness, we can ob-
serve that the samples selected by DataTailor contain richer
information and various description, whereas other samples
suffer from excessive redundancy in responses and numer-
ous blank pixels in images (e.g., the right image shows only
snow slope and the text repeating snowboard). This indi-
cates that selecting samples according to informativeness
can select samples as complex as possible to improve infer-
ence accuracy in downstream tasks while also facilitating
the generation of richer and higher-quality content.

From the perspective of uniqueness, we can observe that
the samples selected by DataTailor in each cluster contain

Methods Informativeness Uniqueness Representativeness MLLM Rel.
+V Inf (15%) 34.3(33.1) - - 99.2%(97.7%)
+V Uni (15%) - 0.363(0.347) - 98.5%(97.4%)
+V Rep (15%) - - 34.6(32.5) 98.6%(97.6%)

Table 5. Deep Analysis for Calculation of Three Values

unique insights (e.g., critically mention artistic installation)
and in-depth novel analysis (e.g., analyze diversity of the
ornamental tree). However, other examples in the cluster
show similar information and primarily describe basic, pre-
learned commonsense knowledge, which limits MLLMs’
ability to enhance generalization on downstream tasks con-
tinuously. This suggests that selecting samples based on
uniqueness enables the inclusion of distinctive samples,
which provide deeper and more novel insights to contin-
uously enhance the reasoning capability during the fine-
tuning phase of MLLM.

From the perspective of representativeness, we observe
that the samples selected by DataTailor exhibit accurate de-
scriptions and aligned answers. This is because the method
ensures that the selected samples represent the overall dis-
tribution, avoiding noise and mislabeled data. Samples with
low representativeness tend to exhibit mislabeled answers
and outlier features, which can lead to incorrect optimiza-
tion directions, ultimately hindering the performance im-
provement of downstream tasks. This suggests the need
for assessing the representativeness of samples to filter out
noisy or mislabeled data.

Based on the above, we propose three essential princi-
ples (i.e., informativeness, uniqueness, and representative-
ness) for the practical selection of valuable samples that
truly contribute to the downstream inference performance
of MLLMs. To further illustrate the superiority of these
three quantitative metrics for three principles, we explore
the insights underlying three values and conduct more ab-
lation of potential alternatives (results are of red color in
Table 5) For informativeness, we adopt the SVE based on
the theory that more informative samples have feature ma-
trices closer to full rank, leading to more uniform singular
values and thus higher SVE. We explore pair-wisely cal-
culating mutual information between token-level features
as an alternative. As SVE captures the overall distribution
of feature directions, it achieves better informativeness and
MLLM performance for data selection (99.2% v.s. 97.7%).
For Uniqueness, we adopt the Euclidean distance based on
the theory that larger distances in the feature space separate
more unique samples and samples containing pre-learned
common knowledge are clustered near the center. We ex-
plore directly selecting one sample from each cluster as an
alternative. As Euclidean distance measures samples’ de-
viation from dense regions, it obtains better MLLM per-
formance with uniqueness (98.5% v.s. 97.4%). For Rep-
resentativeness, we adopt cosine similarity based on the
theory that it reflects the true directional alignment of the



Query: Describe the following image.

Answer: This image features a group of four 
people on a snow-covered slope. They are all 
dressed in ski gear and appear to be traversing 
the slope together. Each person is wearing a 
backpack, signaling that they might be on an 
extended skiing adventure. In addition to the 
people, there are several skis and a snowboard 
visible on the slope, resumably being used by 
the group. The snowy landscape provides a 
pristine and picturesque setting for these skiers.

Redundancy image pixels

Dense description

Useless query

Query: Can you describe the main features of this image for me?

Answer: The image features a cat looking outside through a 
window, with its reflection visible in the glass. The scene outside 
the window is a restaurant where people are sitting at tables 
enjoying their meals. One person can be seen sitting at a table 
closer to the cat, while another sits further back in the 
restaurant. Multiple chairs are present in the scene, with two 
chairs closer to the front of the restaurant and another one 
further away. Two dining tables are also visible, one located in 
front of the person close to the cat and the other being the 
table where he is having his meal.Diverse image pixels

Various object description

Meaning query

High-informativeness sample Low-informativeness sample

Query: Describe the following image.

Answer: The image features a unique and quirky 
pole with numerous stoplights facing various 
directions. The arrangement of these traffic lights 
gives the appearance of an ornamental tree in 
front of a building. There are at least thirteen 
different stoplights attached to the pole, some 
pointing upwards, downwards, or to the sides.
The structure seems to be an artistic installation or 
a creative street decoration, as the stoplights are 
not functioning as typical traffic signals for 
directing vehicular or pedestrian movement. 
Instead, they create an intriguing visual scene that 
captures attention and ignites curiosity.

High-uniqueness sample

Query: Can you elaborate on the elements of the picture provided?

Answer: The scene features an unusual sight near a road – a large 
green pole with at least 20 different traffic lights mounted onto it. 
This one-of-a-kind "tree of traffic lights" creates an interesting visual 
effect, attracting attention. On the road, there are various vehicles 
including several cars and a truck. A person can be spotted close to 
the road, possibly observing the unique traffic light arrangement. 
Overall, the scene captures an uncommon and fascinating display of 
traffic lights next to a busy road.

Query: Analyze the image in a comprehensive and detailed manner.

Answer: The image depicts a unique traffic light tree sculpture situated in the 
middle of an intersection on a city street. This sculpture is made up of 
several traffic lights attached to a pole, creating an impressive and  unusual 
display. In total, there are 12 individual traffic lights arranged in various 
directions and heights on the sculpture, making it a prominent and eye-
catching feature of the street. Surrounding the traffic light sculpture, vehicles 
such as cars, a bus, and a truck can be seen navigating the intersection, 
demonstrating the busy urban environment in which the sculpture is located.

Low-uniqueness sample
Basic pre-learned commonsense

Similar 
information

In-depth novel analysis 

Unique insights

Query: Is the animal looking at the 
camera? Answer the question using 
a single word or phrase.

Answer: Yes.

Query: What are these animals?
Answer: Yak.

Query: Do all animals have antlers?
Answer: Yes.

Incorrect image description

Mislabeled answer

Query: What is the zebra doing? Answer the question using 
a single word or phrase.

Answer: Eating.

Query: Is that a horse?
Answer: No.

Query: What is this animal?
Answer: Zebra.

Query: Is it a sunny day?
Answer: Yes.Correct image description

High-representativeness sample Low-representativeness sample

Alignment answer

Figure 2. Instantiation Comparisons of DataTailor in addressing three core principles (i.e. informativeness, uniqueness, and representative-
ness) for selecting valuable multi-modal instruction samples.

overall distribution. We explore using the overall Euclidean
distance between samples as an alternative. As cosine sim-
ilarity emphasizes overall directional alignment instead of
being influenced by the magnitude of outlier samples like
distance, it performs better in MLLM with true representa-
tiveness (98.6% v.s. 97.6%).

D.4. Limitations

We observe some failure cases that DataTailor cannot dis-
criminate long-term instructions when the reasoning pro-
cess is omitted, e.g., math reasoning and code program.

D.5. Human Evaluation

To comprehensively evaluate whether data selection ensures
the open-ended capabilities of MLLMs, we conduct further



human evaluations using the OwlEval benchmark. Owl-
Eval [21] is an open-ended evaluation set comprising 82
artificially constructed questions. We evaluated responses
from all models on a 3-0 scale (aligned with option A-D in
the official setting), assessing quality based on informative-
ness and alignment with the question, and accuracy based
on consistency with image content. Furthermore, we calcu-
late the score variance for all responses of the MLLMs us-
ing different data selection methods to assess model stabil-
ity. We visualize the human-evaluation results in Figure 1.
We observe that using DataTailor for data selection best pre-
serves the response capabilities of MLLMs, enabling them
to provide both informative answers and maintain the high-
est level of accuracy. This demonstrates that DataTailor ef-
fectively selects representative samples to support the over-
all capabilities of MLLMs, addressing the challenge of col-
laborative multimodal data selection without overemphasiz-
ing specific abilities.
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