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A. Multi-View Approach on Fixed Prompt
To compare learnable prompts with non-trainable fixed
prompts, we conduct an ablation study following the same
procedure as in Sec. 4.3.2 and Sec. 4.3.3, employing the
fixed prompt pairs (Table A.1) from FLIP [6]. As shown
in Table A.2, some fixed prompt pairs achieve comparable
performance to learnable prompts in a single-view setting.
However, Table A.3 indicates that fixed prompt pairs under-
perform in the multi-view setting compared to using learn-
able context texts [V]. We infer that the lower synergy in the
multi-view setting occurs because heuristically determined
fixed prompt pairs cannot guarantee the optimal context for
the model.

Pair No. Positive prompts Negative prompts

P1 This is an example of a real face This is an example of a spoof face
P2 This is a bonafide face This is an example of an attack face
P3 This is a real face This is not a real face
P4 This is how a real face looks like This is how a spoof face looks like
P5 A photo of a real face A photo of a spoof face
P6 This is not a spoof face A printout shown to be a spoof face

Table A.1. Fixed prompt pair settings. Each prompt pair is used in
FLIP [6].

Single-view OCI → M OMI → C OCM → I ICM → O avg.

HTER(%)↓ HTER(%)↓ HTER(%)↓ HTER(%)↓ HTER(%)↓
P1 3.92 3.90 7.47 3.94 4.81
P2 5.00 4.71 3.54 5.85 4.78
P3 3.96 2.84 4.96 4.08 3.96
P4 4.08 4.30 4.28 3.29 3.99
P5 3.42 4.59 4.66 4.58 4.31
P6 4.33 5.99 3.06 5.54 4.73

Table A.2. Comparison of HTER among single-view text pairs in
Protocol 1.

B. Ablation Study on MTPA Coefficient
For the additional loss LMTPA, we empirically determine
its optimal weight λ in the total loss. To evaluate its
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Number HTER↓ AUC↑ TPR@FPR=1%↑
M=1 3.96 99.03 84.89
M=2 3.36 99.33 86.23
M=3 3.11 99.19 85.48
M=4 2.90 99.46 89.55
M=5 2.81 99.30 85.69
M=6 2.67 99.35 85.30

Table A.3. Ablation study on the number of multi-views for fixed
prompts, with each result (%) representing the average across all
scenarios in Protocol 1.

impact on performance, we use the total loss as follows:
Ltotal = Lcls + λLMTPA. As shown in Fig. B.1, we compare
the results when the scale of LMTPA decreases (λ < 1.0),
remains the same (λ = 1.0), or increases (λ > 1.0). The
experiments indicate that the setting with λ = 1.0 achieves
the best performance among all settings, underscoring the
importance of balancing alignment and classification. Con-
sequently, we set the coefficient of LMTPA to 1.0 in the main
paper.

Figure B.1. Performance of HTER and TPR(%)@FPR=1% ac-
cording to the MTPA coefficient, with each result representing the
average across all scenarios in Protocol 1.

C. Additional Visualization Results of MVS
Additional visualization results of MVS for positive and
negative samples are provided in Fig. C.1.

D. Effectiveness of soft-masking in MTPA
To evaluate the impact of soft-masking in MTPA, we
conduct an ablation study, comparing the performance
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Figure C.1. Additional visualization results for each view on real and spoof images across all sub-protocols in Protocol 1. We visual-
ize multi-view attention scores in the first stage of MVS. Baseline (Sec. 4.3.1) indicates the attention map [2], following the visualization
method used in previous studies [3, 4, 6]. The first row for each cross-domain dataset shows the MVS visualization corresponding to the
tree prompts, while the second row displays the MVS attention maps overlaid on the input images.



of MTPA with and without soft-masking. Without soft-
masking, it is equivalent to attaching an auxiliary classifier
to the model while ignoring the similarity between patches
and text. Consequently, as shown in Table D.1, without
soft-masking shows lower performance compared to with
soft-masking, which aligns important patches for spoofing
prediction based on patch-text similarity. These results in-
dicate that similarity-based soft-masking in MTPA offers
more effective alignment guidance to the model.

HTER↓ AUC↑ TPR@FPR=1%↑
MTPA (w/o soft-masking) 3.90 99.13 81.79
MTPA (w/ soft-masking) 1.82 99.70 96.06

Table D.1. Ablation study on the effectiveness of soft-masking in
MTPA, with each result (%) representing the average across all
scenarios in Protocol 1.

E. Effectiveness of Prompt Subsets in MVS

Subset of prompts OCI → M OMI → C OCM → I ICM → O avg.

HTER(%)↓ HTER(%)↓ HTER(%)↓ HTER(%)↓ HTER(%)↓
Lowest 1.83 0.45 2.72 2.56 1.89
Highest 1.71 0.75 1.99 2.82 1.82

Table E.1. Ablation study on the effectiveness of different subsets
of prompts in multi-view setting (M = 3) in Protocol 1.

We conduct an ablation study to evaluate the effective-
ness of different subsets of prompts in the multi-view set-
ting (M = 3). We selected prompts based on single-view
performance in Sec. 4.3.2 including those with the Highest
and Lowest performance. Due to computational resources,
we could not evaluate all possible combinations of prompts
(5C3×4). Nevertheless, as shown in Table E.1, our method
still yields consistent performance improvements (HTER%)
even when combining three prompts with the lowest single-
view performance.

F. Multi-View Text Generation
To generate multi-view texts, we use this sentence to
generate paraphrased texts: {Paraphrase the sentences
“real face” and “spoof face” into sentences of the form
“xxxx face” with the same semantic meaning for anti-
spoofing.} In this paper, we manually assessed the quality
of the texts generated by ChatGPT [1] and excluded those
of insufficient quality.

G. Semantic Diversity in Class Texts
This paper aims to extract diverse features for generaliza-
tion by using various paraphrased texts rather than prompt
tuning in previous works [3, 5]. As shown in the figure G.1,

Figure G.1. Similarity for negative and positive texts. The
heatmap shows feature similarity among five similar texts within
each group. Darker colors indicate higher similarity.

which shows the similarity between CLIP text embeddings
for each class text, even short class texts can have varied
embeddings. Based on these results, instead of including
diverse attributes in the prompts, we use simple class texts
to avoid the influence of other attributes.

H. Details of MVS Ablation Study

This section provides detailed settings for two alternative
methods in Table 7 of Sec. 4.3.5 and explains the reasoning
behind their selection.
Similarity. To compare our MVS with the text-image
information fusion method used in FLIP [6], we select a
similarity-based approach as a baseline. Specifically, this
method makes predictions by computing the cosine simi-
larity between the mean of global-aware patch embeddings
passed through a projection layer and the mean text embed-
dings of each class, without using a classification head.
Cross-attention. Unlike slot attention, the general attention
mechanism [7] combines values through weighted summa-
tion. Therefore, using patch embeddings as queries and
text embeddings as keys and values intermixes the seman-
tic meanings of positive and negative texts, which results
in significant performance degradation (average HTER of
14.67 in Protocol 1). Consequently, to effectively aggre-
gate patch information, text embeddings as queries and
patch embeddings as keys and values are more suitable
for cross-attention. Thus, we adopt this setting to evalu-
ate cross-attention. The cross-attention setting, similar to
MVS, computes the mean of the cross-attention module’s
output, projects it, and passes it through a classification
head to produce the prediction results.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad,

Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 3

[2] Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-model
explainability for interpreting bi-modal and encoder-decoder



transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 397–406, 2021. 2

[3] Xueli Hu, Huan Liu, Haocheng Yuan, Zhiyang Fu, Yizhi Luo,
Ning Zhang, Hang Zou, Gan Jianwen, and Yuan Zhang. Fine-
grained prompt learning for face anti-spoofing. In ACM Mul-
timedia, 2024. 2, 3

[4] Ajian Liu, Shuai Xue, Jianwen Gan, Jun Wan, Yanyan
Liang, Jiankang Deng, Sergio Escalera, and Zhen Lei. Cfpl-
fas: Class free prompt learning for generalizable face anti-
spoofing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 222–232,
2024. 2

[5] Si-Qi Liu, Qirui Wang, and Pong C Yuen. Bottom-up domain
prompt tuning for generalized face anti-spoofing. In European
Conference on Computer Vision, 2024. 3

[6] Koushik Srivatsan, Muzammal Naseer, and Karthik Nandaku-
mar. Flip: Cross-domain face anti-spoofing with language
guidance. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 19685–19696, 2023.
1, 2, 3

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,
2017. 3


	Multi-View Approach on Fixed Prompt
	Ablation Study on MTPA Coefficient
	Additional Visualization Results of MVS
	Effectiveness of soft-masking in MTPA
	Effectiveness of Prompt Subsets in MVS
	Multi-View Text Generation
	Semantic Diversity in Class Texts
	Details of MVS Ablation Study

