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8. List of Flow Prediction Videos

We provide flow prediction videos for each evaluated
dataset—MVSEC, EVIMO2, and DSEC. These visualiza-
tions showcase predictions from models trained on each of
the three datasets. Figure 8 shows some screenshots of the
video. The videos are in this link. The enumeration of
videos are as followed:
• DSEC eval interlaken 00 a.mov
• DSEC eval interlaken 00 b.mov
• DSEC eval interlaken 01 a.mov
• DSEC eval thun 01 a.mov
• DSEC eval thun 01 b.mov
• DSEC eval zurich city 13 a.mov
• DSEC eval zurich city 13 a.mov
• DSEC eval zurich city 13 b.mov
• DSEC eval zurich city 14 a.mov
• DSEC eval zurich city 14 b.mov
• DSEC eval zurich city 14 c.mov
• DSEC eval zurich city 15 a.mov
• EVIMO eval scene13 dyn test 00 000000.mov
• EVIMO eval scene13 dyn test 05 000000.mov
• EVIMO eval scene14 dyn test 03 000000.mov
• EVIMO eval scene14 dyn test 04 000000.mov
• EVIMO eval scene14 dyn test 05 000000.mov
• EVIMO eval scene15 dyn test 01 000000.mov
• EVIMO eval scene15 dyn test 02 000000.mov
• EVIMO eval scene15 dyn test 05 000000.mov
• EVIMO sfm scene 03 00 000000.mov
• EVIMO sfm scene 03 01 000000.mov
• EVIMO sfm scene 03 02 000001.mov
• EVIMO sfm scene 03 02 000002.mov
• EVIMO sfm scene 03 02 000003.mov
• EVIMO sfm scene 03 03 000000.mov
• EVIMO sfm scene 03 03 000001.mov
• EVIMO sfm scene 03 03 000002.mov
• EVIMO sfm scene 03 04 000000.mov
• MVSEC eval indoor flying1.mov
• MVSEC eval outdoor day1.mov

In addition, we provide qualitative evaluation on FPV and
VECtor, which ground-truth optical flow is not available.
The predictions are generated by the model trained on
M+D+E to demonstrate the usability of the our estimator.
Figure 10 shows some screenshots and the following videos
are uploaded:
• VECtor sofa normal.mov
• VECtor sofa fast.mov
• VECtor mountain normal.mov
• VECtor mountain fast.mov

• FPV outdoor 45 2 davis.mov
• FPV outdoor forward 6 davis.mov
• FPV indoor 45 16 davis.mov
• FPV indoor forward 11 davis.mov

9. Dataset Preprocessing

In this section, we detail how to preprocess the data to
obtain undistorted normalized per-event optical flow on
MVSEC, EVIMO2, and DSEC.
MVSEC & EVIMO2 both provide frame-based forward
optical flows in the distorted camera coordinates. We first
interpolate the flow in the time domain. If an event (t, x, y)
lies between t0 and t1, the optical flow at this event is com-
puted as:

u(t, x, y) =
t→ t0
t1 → t0

flow(t1, x, y)+
t1 → t

t1 → t0
flow(t0, x, y)

After this, we convert the per-event distorted flow in the raw
pixel coordinates into undistorted flow in the normalized
pixel coordinates using cv2.undistortPoints.

start = cv2.undistortPoints(x, y,K,D)

end = cv2.undistortPoints(x+ ux, y + uy,K,D)

out = (end→ start)/(t1 → t0)

This will transform the flow into undistorted normalized
camera coordinates, with unit normalized pixel per second.
DSEC, different from the previous two datasets, provides
frame-based forward optical flow and backward optical
flow, which can be used to obtain more accurate per-event
optical flow. Specifically, we let

flow(t1, x, y) =
1

2
(

flow forward(t1, x, y)→ flow backward(t1, x, y)

)

The following procedures are the same as the previous two
datasets.

10. Implementation Details of Our Model

We transform the event pixels and flows into undistorted,
normalized camera coordinates as explained in Appendix 9.
The resulting flows are then scaled such that their unit is in
pixels per second. After this scaling, the flow norms fall
within a range of 0 to 3.

During training, we randomly sample an event, using a
uniform distribution over the logarithm of the flow norm,

https://drive.google.com/drive/u/3/folders/1gkmUyZX5VRf8DxiBKL9CSdWdifjqZVq3


Figure 6. Screenshot of the flow prediction videos. Each row displays the norm, angle, and flow fields of both ground-truth and predicted
flows. The first row visualizes the ground-truth optical flow, while subsequent rows show model predictions trained on each dataset. To
illustrate the flow field, we sample 5,000 flow points for visualization. If a pixel is gray, it means the flow prediction has a high uncertainty.

13 00 13 05 14 03 14 04 14 05 15 01 15 02 15 05 Average

PEE %Pos PEE %Pos PEE %Pos PEE %Pos PEE %Pos PEE %Pos PEE %Pos PEE %Pos PEE %Pos

Norm + Direction Loss 0.972 90.0% 0.912 98.1% 0.749 98.9% 0.762 96.9% 1.150 97.3% 0.559 96.9% 0.610 94.5% 1.274 91.5% 0.87 95.5%
Ours 0.497 96.7% 0.399 99.2% 0.478 99.2% 0.515 98.8% 0.584 98.6% 0.286 98.1% 0.274 96.8% 0.354 95.5% 0.42 97.9%

Difference ↑ 0.475 ↓ 6.7% ↑ 0.513 ↓ 1.1% ↑ 0.271 ↓ 0.3% ↑ 0.247 ↓ 1.9% ↑ 0.566 ↓ 1.3% ↑ 0.273 ↓ 1.2% ↑ 0.336 ↓ 2.3% ↑ 0.92 ↓ 4.0% ↑ 0.45 ↓ 2.4%

Table 5. Comparison between the estimator trained with our motion field loss function and the one trained with the standard norm-plus-
direction loss function. Using our motion field function significantly improves the model’s performance.

within the range of 0.01 to 3. We then slice the event stream
around the sampled event to create the training samples. We
apply the data augmentation techniques described in Sec-
tion 3.4. The pixel radius parameters (ωx, ωy in Eqn. (3))
are set to 0.02, which correspond to 4.5, 10.4, and 11.1 pix-
els for the MVSEC, EVIMO2, and DSEC datasets, respec-
tively, measured in terms of raw pixels. The time radius (ωt
in Eqn. (3)) is 20 ms. The parameter ε in Eqn. (5) is set
to 0.1. The dimension of the local event encoding is 384.
We remove the predictions with circular standard deviation
larger than 0.15 (Section 3.5). If the events size within 20
ms is larger than 80,000, we randomly sample 80,000 events
from the 20 ms interval. Our model is trained end-to-end
in one stage, where the VecKM encoding does not require
training. The training converges in 24/24/48/64 hours for
M/E/D/M+D+E datasets, using the Adam optimizer with a
1e-3 learning rate.

11. Ablation Studies

We use the EVIMO2-imo dataset for our ablation stud-
ies because it presents challenging scenarios with inde-
pendently moving objects. The models are trained on
EVIMO2-imo training set to better capture the impact of
the ablated factors.

11.1. Effect of Motion Field Loss

We show that our estimator benefits from being trained on
the novel motion field loss by comparing to an optical flow
loss. While variations on average end-point error (AEE) are
typically used for supervised training of optical flow estima-
tors, our method, which is designed to estimate normal flow,
does not converge when trained with such losses. Thus, we
designed the following norm + direction loss to train our
estimator to estimate optical flow, defined as follows:
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Figure 7. The model can choose between estimating the full optical flow or normal flow depending on the texture of the local region. If
the local texture is rich enough (e.g. a corner), the model will estimate full optical flow. If the local texture only contains strong edges, the
model will estimate normal flow.

L1 = log
(ε+ ||u||
ε+ ||û||

)2

L2 = → u · û
||u|| · ||û||

L = L1 + L2

Where û is the output of our method when being trained
with this optical flow loss.

As shown in Table 5, our motion field loss function sig-
nificantly enhances the estimator’s performance in terms of
PEE and %Pos. The reason is as followed: When opti-
cal flow is unambiguous, predicting optical flow minimizes
both objectives. However, when optical flow is ambiguous
(e.g. the local events correspond to an edge), our normal
flow objective guarantees that predicting normal flow will
minimize the loss, while optical flow objective does not.

In addition, we analyze the behavior of our estimator
qualitatively in Figure 7. After the model is trained using
our motion field loss function, the model can choose be-
tween estimating full optical flow or normal flow depending
on the texture of the local regions. This further justifies the
effect of our motion field loss function.

11.2. Effect of Uncertainty Quantification

Figure 9 (Left) provides a comprehensive analysis of the
estimator’s performance, showing prediction errors along-
side the percentage of confident predictions across vari-
ous ensemble sizes and uncertainty thresholds. The posi-
tive correlation observed between prediction errors and un-
certainty scores underscores the effectiveness of the un-
certainty quantification. Our results indicate that an un-

certainty threshold between 0.3 and 0.6 achieves an opti-
mal balance between valid prediction rates and accuracy.
Additionally, the table reveals that 3 to 4 ensemble pre-
dictions are sufficient for consistent uncertainty estimation,
though larger ensembles generally yield improved perfor-
mance. For scenarios where runtime is not a constraint, em-
ploying larger ensembles can enhance prediction accuracy.

We also evaluate the egomotion estimation error when
setting different uncertainty threshold, shown at Figure 9
(Right). We found an uncertainty threshold of 0.15 yields
the best performance. When the threshold is too low, the
number of events may be too few to yield good estimation.

11.3. Runtime and Memory Usage

Table 7 presents the computational cost of our estimator.
Unlike frame-based methods, the runtime of our point-
based estimator varies with event density. When event den-
sity is high, it may run slower than frame-based methods.
However, the computation remains generally feasible even
on entry-level GPUs.

12. Per-Scene Normal Flow Evaluation on

EVIMO2

We present the per-scene normal flow evaluation on
EVIMO2-imo, as shown in Table 8.

13. Per-Scene Normal Flow Evaluation on

DSEC

We present the per-scene normal flow evaluation on
DSEC training set holdout, as shown in Table 6. For
the model trained on DSEC, it is only trained on



zurich city 02 c, with a duration of 80 seconds. Our
model performs well on day scenes, while its performance
degrades when applied to night scenes. As shown in Fig-
ure 8, the performance degradation is mainly because many
events are continuously triggered by the flickering light. At
the same time, our uncertainty quantification module can
assign high uncertainty scores to those events.

14. Per-Scene Egomotion Evaluation on

EVIMO2

We present the per-scene egomotion evaluation on
EVIMO2, as shown in Figure 11.



Figure 8. Flow prediction on a night scene zurich city 02 e. The flickering light causes many events to be triggered continuously,
which degrades the performance of our model.

Day Scenes
training

set
zurich city 01 a zurich city 02 a zurich city 02 d zurich city 05 a
PEE %Pos PEE %Pos PEE %Pos PEE %Pos

MVSEC 1.377 82.5% 1.162 99.6% 1.316 93.3% 2.176 96.3%
EVIMO 1.008 86.6% 0.977 99.8% 0.749 95.1% 1.281 96.0%
DSEC 0.873 87.9% 0.900 99.8% 0.619 95.5% 1.187 95.4%

Day Scenes
training

set
zurich city 05 b zurich city 06 a zurich city 07 a zurich city 08 a
PEE %Pos PEE %Pos PEE %Pos PEE %Pos

MVSEC 3.451 73.8% 1.134 84.6% 1.528 82.6% 0.904 99.5%
EVIMO 1.457 81.2% 1.236 82.1% 0.978 85.5% 0.912 99.8%
DSEC 1.485 80.5% 1.493 81.3% 0.972 85.9% 0.820 99.8%

Night Scenes
training

set
zurich city 02 e zurich city 03 a zurich city 10 a zurich city 10 b
PEE %Pos PEE %Pos PEE %Pos PEE %Pos

MVSEC 2.952 74.1% 2.390 74.2% 2.088 96.8% 1.149 99.0%
EVIMO 2.141 73.1% 1.060 63.2% 2.145 89.4% 1.047 98.4%
DSEC 1.972 74.2% 0.862 65.3% 1.710 93.3% 0.885 98.4%

Table 6. Per-scene normal flow evaluation on DSEC training set hold out.



% Pos num ensemble=2 num ensemble=4 num ensemble=6 num ensemble=10
conf thres=0.1 97.2% 97.7% 98.4% 98.2%
conf thres=0.2 96.9% 98.0% 98.3% 98.4%
conf thres=0.3 96.5% 97.7% 98.0% 98.1%
conf thres=0.4 96.2% 97.4% 97.7% 97.9%
conf thres=0.5 95.9% 97.2% 97.5% 97.7%
conf thres=0.6 95.7% 96.9% 97.3% 97.5%
conf thres=0.7 95.5% 96.7% 97.1% 97.2%
conf thres=nfty 92.3% 92.6% 92.8% 92.8%

PEE num ensemble=2 num ensemble=4 num ensemble=6 num ensemble=10
conf thres=0.1 0.467 0.529 0.580 0.686
conf thres=0.2 0.461 0.442 0.436 0.436
conf thres=0.3 0.454 0.436 0.423 0.423
conf thres=0.4 0.454 0.436 0.423 0.423
conf thres=0.5 0.454 0.436 0.423 0.423
conf thres=0.6 0.454 0.436 0.423 0.429
conf thres=0.7 0.454 0.436 0.423 0.423
conf thres=nfty 0.442 0.423 0.411 0.411

Valid Pct. num ensemble=2 num ensemble=4 num ensemble=6 num ensemble=10
conf thres=0.1 45.0% 17.4% 4.3% 1.6%
conf thres=0.2 66.8% 53.3% 49.6% 47.9%
conf thres=0.3 74.9% 66.6% 65.0% 63.3%
conf thres=0.4 78.8% 72.2% 70.6% 68.8%
conf thres=0.5 81.1% 75.1% 73.4% 71.5%
conf thres=0.6 82.7% 77.0% 75.3% 73.6%
conf thres=0.7 83.9% 78.5% 76.9% 76.8%
conf thres=nfty 100% 100% 100% 100%

Figure 9. Effectiveness of uncertainty quantification. Left: The flow prediction errors are positively correlated with the uncertainty scores.
Right: The egomotion estimation error is minimized by choosing a suitable threshold. Both findings highlight the effectiveness of the UQ.

Inference Time (5 ensembles) Max GPU Memory Allocation
num events = 10k 0.111 s 0.70 GB
num events = 20k 0.287 s 1.36 GB
num events = 40k 0.910 s 2.71 GB
num events = 80k 3.138 s 5.39 GB

Runtime to process 1 second of events.
Tested on RTX3090

MVSEC
outdoor day 1

EVIMO
imo-13-00

EVIMO
sfm-03-00

DSEC
thun 01 a

DSEC
interlaken 00 a

median event density (events / 20 ms) 6900 35500 77000 101900 146400
Multi-CM (not parallelizable) >30 minutes
E-RAFT 7.5 s 40 s 40 s 40 s 40 s
TCM 6.8 s 35 s 35 s 35 s 35 s
Ours (5 ensembles, max 80k events) 5.9 s 30 s 80 s 150 s 150 s

#events every 20 ms – quantile

min 25% 50% 75% max

MVSEC – indoor flying1 85 2396.25 3720.0 5376.0 16177
MVSEC – indoor flying2 78 3157.0 5297.5 7987.5 23890
MVSEC – indoor flying3 78 2746.0 4850.0 6845.0 17476
MVSEC – outdoor day1 58 4412.0 6903.0 10646.75 96327

EVIMO – IMO 13 00 7954 23564.5 35535.0 46824.5 68946
EVIMO – IMO 13 05 10806 55951.0 78963.0 87891.0 120730
EVIMO – SFM 03 00 2962 15766.0 76979.0 88460.5 105177
EVIMO – SFM 03 01 15315 41049.0 80223.0 94096.0 118441

DSEC – interlaken 00 a 123449 133520.0 146397.0 157920.0 165356
DSEC – interlaken 00 b 183286 187122.75 189133.5 196445.75 209048
DSEC – thun 01 a 66476 83569.25 101858.5 117016.75 121001
DSEC – zurich city 12 a 116746 138822.0 167154.0 196738.5 228827

Table 7. Runtime and memory cost of our estimator. Upper Left: runtime and memory cost when processing events of different densities.
Lower Left: runtime comparison among existing methods. Multi-CM [46] relies on contrast maximization to estimate optical flow, which
significantly increases its runtime when event density is high. In contrast, E-RAFT [21] and TCM [35] are frame-based methods, making
their runtime largely independent of event density. The runtime of our point-based estimator, however, varies with event density. While it
may run slower than frame-based methods at high event densities, it remains generally feasible even on entry-level GPUs. Right: Density
statistics of scenes from different datasets.



Figure 10. Qualitative evaluation on FPV and VECtor. The predictions are generated using a model trained on M+D+E, demonstrating
the estimator’s generalizability across diverse datasets. VECtor in general has more confident predictions than FPV since VECtor uses a
higher resolution camera and produces denser events.



Scene 13 00 Scene 13 05 Scene 14 03 Scene 14 04Input Training
Set PEE ↑ % Pos ↓ PEE ↑ % Pos ↓ PEE ↑ % Pos ↓ PEE ↑ % Pos ↓

MultiCM MB F - 1.509 53.2% 4.315 75.7% 1.611 79.2% 1.800 73.2%
PCA MB P - 1.573 88.2% 2.035 87.5% 1.580 91.9% 1.784 90.3%

M 1.370 71.9% 2.406 90.6% 1.356 69.5% 1.458 64.6%E-RAFT SL F D 0.843 88.9% 1.185 97.5% 0.517 88.1% 0.538 85.9%
M 0.823 85.6% 3.201 95.3% 1.111 86.3% 1.532 86.0%TCM SSL F D 0.774 87.3% 2.541 95.1% 0.872 87.8% 1.090 86.5%

PointNet SL P E 1.047 88.1% 0.924 97.7% 0.848 98.3% 0.892 96.2%
M 0.713 95.6% 0.269 99.3% 0.676 98.8% 0.651 98.1%
D 0.590 96.6% 0.230 99.8% 0.575 99.8% 0.625 99.5%

E 0.497 96.7% 0.399 99.2% 0.478 99.2% 0.515 98.8%Ours SL P

M+D+E 0.465 96.2% 0.308 99.2% 0.544 99.3% 0.467 98.8%

scene 14 05 scene 15 01 scene 15 02 scene 15 05Training
Set PEE ↑ % Pos ↓ PEE ↑ % Pos ↓ PEE ↑ % Pos ↓ PEE ↑ % Pos ↓

MultiCM MB F - 2.768 72.9% 0.852 68.0% 0.802 66.2% 0.744 59.8%
PCA MB P - 1.823 89.4% 1.467 92.1% 1.612 78.2% 1.821 84.7%

M 2.186 67.1% 0.899 72.7% 0.980 67.1% 1.100 57.9%ERAFT SL F D 0.908 86.3% 0.432 91.3% 0.541 90.9% 0.674 73.9%
M 2.445 82.2% 0.588 85.4% 0.556 87.7% 0.811 68.0%TCM SSL F D 1.640 84.1% 0.523 85.5% 0.528 87.9% 0.871 68.1%

PointNet SL P E 1.053 96.6% 0.765 96.1% 0.752 95.1% 1.185 91.5%
M 0.806 98.2% 0.470 96.6% 0.433 95.8% 0.392 94.3%
D 0.567 99.4% 0.391 98.1% 0.298 97.1% 0.424 93.2%
E 0.584 98.6% 0.286 98.1% 0.274 96.8% 0.354 95.5%Ours SL P

M+D+E 0.568 98.5% 0.319 97.8% 0.300 97.0% 0.201 95.7%

Table 8. Per-scene normal flow evaluation on EVIMO2-imo split.



scene_03_04_0scene_03_03_2scene_03_03_1

scene_03_03_0scene_03_02_3scene_03_02_2

scene_03_02_0scene_03_01_0scene_03_00_0

Figure 11. Per-scene egomotion evaluation on EVIMO2 sfm split.
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