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Supplementary Material

Sec.1 presents the ablation study of our method under
Degradation Setting 2. Sec.2 provides implicit degradation
representation (IDR) discriminative evaluation, qualitative
and quantitative comparison of different methods on unseen
degradations. Sec.3 showcases the recovery effects of vari-
ous methods across multiple degradation scenarios.

1. Additional Ablation Study

To comprehensively validate the effectiveness of the pro-
posed method, we further analyze the effects of each compo-
nent under Degradation Setting 2. We select nine anisotropic
Gaussian blur kernels. For each kernel, we show the average
PSNR on B100 benchmark [14] under degradation combina-
tions with noise levels of 5 and 10.

1.1. Core Components for Training
Similarly, we primarily analyze the effect of degradation

reference prior (DRP), contrastive learning (CL), and the
number of positive samples on SR performance.

1) Effect of DRP and CL. These two are used to enhance
the discriminability of IDRs. The results are shown in Table
1. We also build four models: T1 is the baseline model
without DRP and CL. T2 incorporates DRP and achieves
an average PSNR improvement over T1 of 0.20 dB across
different degradation conditions. T3 introduces CL and
achieves an average PSNR improvement over T1 of 0.17
dB across different blur kernels. By combining DRP and CL,
our method (T4) achieves 0.26 dB improvement in average
PSNR on all blur kernels compared to T1. The above results
indicate that DRP and CL are crucial for training the IDR-
estimator, and they are compatible.

2) Impact of Positive Sample Number. To further verify
the impact of the number of positive samples D on the SR
performance, we conduct experimental analysis under four
different anisotropic Gaussian blur kernels. The results are
shown in Fig.1. Consistent with the conclusion under the
Degradation Setting 1, our method achieves the best balance
between performance and training computational cost when
the number of positive samples D is set to 4.

1.2. Core Components of IDR-AM
For IDR-AM, we primarily validate the effectiveness of

the IDR Adaptation Block (IDR-AB) and the IDR Correction
Block (IDR-CB). The results are presented in Table 2.

1) Effect of IDR-AB. There are two degradation modu-
lation branches: channel-wise (R̂C) and spatial-wise (R̂S).
M1 represents the baseline model without any modulation
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Figure 1. The effect of different numbers of positive samples.

branch. Compared to M1, by adding spatial-wise modula-
tion (M2) or channel-wise modulation (M3), the average
PSNR on all blur kernels are 0.75 dB and 0.77 dB higher
than that of M1, respectively. Furthermore, by applying
both spatial- and channel-wise modulation, the PSNR results
on all blur kernels can be further improved compared to
M2 and M3. The above results show the effectiveness and
complementarity of the two modulation branches.

2) Effect of IDR-CB. Firstly, we obtain M5 by removing
the IDR-CB from M4 (ours). It can be observed that the
average PSNR of M5 is 0.07 dB lower than M4 on all blur
kernels, demonstrating the promoting effect of IDR-CB on
SR performance. Secondly, we add random values ranging
from 0 to 1 to the output of the IDR-estimator for both the
M4 and M5 to simulate incorrect IDR inputs, and define
the results as M4- (with IDR-CB) and M5- (without IDR-
CB), respectively. We can see that M4- achieves higher
PSNR values than M5- across all degradation scenarios,
demonstrating that the IDR-CB can effectively mitigate the
adverse effects of incorrect degradation estimation.

2. Out-of-distribution (OOD) Evaluation

To validate the generalizability, we evaluate the perfor-
mance of all methods in degradation scenarios outside the
training range, including three experimental perspectives:
IDR distribution, quantitative and qualitative evaluation.

2.1. The OOD evaluations in Degradation Setting 1
Under Degradation Setting 1, we compare the SR per-

formance of different methods from both quantitative and
qualitative perspectives. The results are as follows.

Quantitative evaluation. We use three different isotropic
blur kernel widths {4.8, 5.0, 5.2} to evaluate the SR perfor-
mance of various methods across four classic benchmarks.
The comparison results with CDFormerS [12], DSAT [11],



Teacher DRP CL

T1 26.28 26.20 25.52 25.37 25.33 25.28 25.17 24.91 24.58
T2 ✓ 26.47 26.43 25.73 25.56 25.52 25.47 25.36 25.10 24.79
T3 ✓ 26.49 26.40 25.74 25.51 25.50 25.44 25.31 24.99 24.77

T4(Ours) ✓ ✓ 26.53 26.46 25.77 25.61 25.58 25.53 25.43 25.15 24.86

Table 1. The effect of different training framework designs on the average PSNR for noise levels of 5 and 10 under nine different anisotropic
blur kernels in Degradation Setting 2.

Method R̂S R̂C IDR-CB

M1 25.82 25.64 24.87 24.82 24.89 24.75 24.63 24.36 24.09
M2 ✓ ✓ 26.49 26.43 25.74 25.59 25.55 25.48 25.41 25.11 24.84
M3 ✓ ✓ 26.51 26.44 25.74 25.60 25.57 25.51 25.42 25.13 24.85

M4(Ours) ✓ ✓ ✓ 26.53 26.46 25.77 25.61 25.58 25.53 25.43 25.15 24.86
M5 ✓ ✓ 26.47 26.40 25.71 25.57 25.50 25.45 25.32 25.11 24.75
M4- M4 with error IDRs 26.24 26.19 25.20 25.20 25.11 25.02 24.90 24.33 23.82
M5- M5 with error IDRs 26.20 26.18 25.18 25.02 24.98 24.89 24.69 24.23 23.72

Table 2. The effect of different IDR-AM designs on the average PSNR for noise levels of 5 and 10 under nine different anisotropic blur
kernels in Degradation Setting 2.

Method Param.
Dataset Set5 Set14 B100 Urban100

Kernel width 4.8 5.0 5.2 4.8 5.0 5.2 4.8 5.0 5.2 4.8 5.0 5.2

DAN 4.3M CNN 25.95 25.36 24.93 24.24 23.84 23.47 24.52 24.23 23.98 21.73 21.34 21.04
DASR 5.8M CNN 25.77 25.23 24.83 24.24 23.85 23.51 24.45 24.18 23.95 21.66 21.32 21.05
MRDA 5.8M CNN 25.90 25.30 24.84 24.10 23.70 23.35 24.46 24.13 23.86 21.64 21.23 20.93
KDSR 5.8M CNN 25.90 25.31 24.84 24.38 23.90 23.50 24.52 24.20 23.92 21.77 21.33 21.00
DSAT 15.6M Transformer 25.54 25.07 24.71 24.08 23.71 23.40 24.51 24.24 23.98 21.63 21.29 21.00

CDFormerS 11.9M Transformer 25.71 25.18 24.77 24.10 23.72 23.38 24.41 24.13 23.89 21.56 21.21 20.92
LightBSR 3.1M CNN 25.95 25.36 24.92 24.30 23.88 23.51 24.54 24.24 23.98 21.83 21.40 21.08

Table 3. Quantitative comparison of PSNR metric for different methods under unseen degradations on ×4 SR. The best and second-best
results are highlighted in red and blue, respectively.

KDSR [18], MRDA [17], DASR [16], and DAN [7] are pre-
sented in Table 3. It can be seen that our proposed LightBSR
achieves the best or second-best results across all degrada-
tion scenarios while maintaining the minimum number of
parameters among all competitors.

Qualitative evaluation. We also present the visual SR
results of these methods on unseen degradations. The com-
parison results are shown in Fig.3. It can be observed that
even when facing unseen degradation settings, LightBSR is
capable of clearly and accurately restoring texture details,
demonstrating the strong generalizability of our method.

2.2. The OOD evaluations in Degradation Setting 2
Under more complex Degradation Setting 2, we focus

on evaluating the discriminative ability of the IDR space
learned by each method for OOD degradation patterns.

Quality of IDRs. We apply four different unseen an-
isotropic blur kernels on the B100 benchmark [14] to gen-
erate LR images, which are then input to DASR [16],
MRDA [17], KDSR [18], DSAT [11], CDFormerS [12] and
LightBSR. Comparing the IDR distributions of various meth-
ods in Fig.2, it can be observed that: 1) CDFormerS struggles
to differentiate different unseen degradations, demonstrating

that diffusion-based estimator still needs optimization. 2)
DSAT and DASR cannot deal with unknown degradation,
indicating that only CL-based training framework cannot
achieve good IDR generalization. 3) KDSR, MRDA and
LightBSR all show the discriminability for various unseen
degradations, with the latter two showing significant advan-
tages. These three methods all adopt the idea of KD and
introduce degradation priors or multi-stage pipelines during
training, showing that sophisticated IDR modeling is crucial
for improving IDR generalization.

3. Additional Visual Results
Visual Comparison in Degradation Setting 1. We

present the ×4 SR results of different models under Degra-
dation Setting 1 in Fig.4, Fig.5, and Fig.6. The competitors
include IDE-based methods CDFormerS [12], DSAT [11],
KDSR [18], MRDA [17] and DASR [16], and EDE-based
methods IKC [4] and DAN [7]. Compared to these methods,
our method achieves superior visual restoration, producing
clearer text, architectural details, and animal textures.

Visual Comparison in Degradation Setting 2. We pro-
vide the ×4 SR results under Degradation Setting 2 in Fig.7
and Fig.8. Considering that IKC [4], DAN [7] and DCLS
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Figure 2. The t-SNE [15] plots of IDR distributions on the B100
benchmark [14]. Four different unseen anisotropic blur kernels are
chosen under Degradation Setting 2, with the noise level set to 4.

[13] are unable to denoise images, we first apply the DnCNN
[20] method as a denoising preprocessing step for these ap-
proaches. Compared to these methods, LightBSR produces
clearer textures and more visually acceptable results under
complex degradation scenarios.

Visual Comparison in Real Degradation Scenario. Fi-
nally, we also provide some ×4 SR results under real degra-
dations, using the RealWorld38 [10] dataset. The visual
comparison of different models trained under Degradation
Setting 2 is shown in Fig.9. It can be observed that even
for real degradations, our method also achieves satisfactory
results in terms of detail and texture restoration.

4. Related Work

The key to BSR is to use a learnable estimator to extract
degradation information from LR images instead of manu-
ally setting degradation parameters [19, 21], to guide image
reconstruction. Early BSR methods explicitly predict degra-
dation parameters, i.e. EDE-BSR task. IKC [4] iteratively
refined the estimator by using generated SR images until the
satisfactory SR result is achieved. DAN [7] introduced a two-
branch network that predicts the blur kernel and SR image in
parallel, alternately updating blur kernel estimation and SR
reconstruction. DCLS [13] incorporated a deep constrained
least square filtering module, adaptively producing deblurred
features from the LR image. Despite remarkable progress,
this kind of method typically requires numerous iterations
to compute degradation parameters, making it complex and
time-consuming. To solve this problem, some works focus
on the implicit modeling of degradation, called IDE-BSR,
with a research emphasis on learning a latent representa-
tion space for various degradations and integrating implicit
degradation representation with LR features. DASR [16]
used contrastive learning [5] for the first time to model im-
plicit representation of different degradations by learning
the similarities and differences between samples. IDMBSR

[22] incorporated the kernel width and noise level as weakly
supervised signals to guide the implicit estimator training.
MRDA [17] used meta-learning [3] and a multi-stage strat-
egy to implicitly learn degradation representations. KDSR
[18] used the knowledge distillation (KD) [1, 6, 8] for the
first time to learn the IDR estimator, where HR images are
used to assist in teacher training, with the learned knowledge
transferred to the student for degradation estimation during
inference. Recently, both DSAT [11] and CDFormer [12]
have adopted the design of building large SR networks by
stacking Transformer blocks [2, 9] to achieve good effect,
but over-complex models also limit their application. Com-
pared with latest methods that improve effect by expanding
model parameters, our goal is to achieve a high-performance
and low complexity BSR model by strengthening the dis-
criminability of implicit degradation space.
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Figure 3. ×4 SR visual results of various methods on the “img 033” of the Urban100 under unseen degradation settings. Zoom in to view
additional details.
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Figure 4. ×4 SR results for isotropic Gaussian blur kernel width 1.2 on Set14, B100 and Urban100 benchmarks.
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Figure 5. ×4 SR results for isotropic Gaussian blur kernel width 2.4 on B100 and Urban100 benchmarks.
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Figure 6. ×4 SR results for isotropic Gaussian blur kernel width 3.6 on B100 and Urban100 benchmarks.
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Figure 7. ×4 SR results on B100 and Urban100 benchmarks under an anisotropic Gaussian blur kernel with a noise level of 5.
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Figure 8. ×4 SR results on B100 and Urban100 benchmarks under an anisotropic Gaussian blur kernel with a noise level of 10.
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Figure 9. ×4 SR results on the RealWorld38 benchmark.
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