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6. Datasets

LRS3. LRS3[2] stands as the largest publicly-available
transcribed dataset for audio-visual speech recognition,
containing over 430 hours of TED talk presentations. Fig-
ure 5 illustrates some frames in the dataset. With a rich
vocabulary exceeding 50,000 words and more than 5,500
speakers across presentations. These videos exhibit sub-
stantial variations in recording conditions: varying im-
age resolutions, diverse lighting conditions, dynamic head
poses, and a wide range of speaking styles and accents (e.g.
native or non-native English speakers). Such diversity in
visual and linguistic variations makes LRS3 a challeng-
ing benchmark for evaluating VSR systems. The test set
comprises approximately one hour of footage with speak-
ers entirely distinct from the training set, ensuring rigorous
speaker-independent evaluation.

Figure 5. Example frames in LRS3.

AVSpeech. The AVSpeech dataset[11] captures real-world
speech scenarios by mining YouTube videos, resulting in a
massive collection of 4,700+ hours of segments from more
than 290k videos. Some frames of the dataset are shown
in Figure 6. The facial regions in these videos exhibit sub-
stantial variations: from consumer-grade webcam footage
to professional broadcast quality, under natural daylight or
artificial illumination, and with spontaneous head move-
ments during speech. Natural occlusions frequently occur,
such as hair covering parts of the face, hands gesturing near
the mouth, or overlay text and graphics in broadcast videos.
These facial variations, combined with the dataset’s diverse
speaker demographics, pose significant challenges for VSR
systems. In our experiments, our evaluation focuses on the
English portion of the dataset, which amounts to approxi-
mately 1,322 hours of speech content. Additionally, as the
original test set is relatively large at 150 hours, we randomly
sampled an approximately one-hour subset for test, which
maintains consistency with the LRS3 test set scale.

Figure 6. Example frames in AVSpeech.

Contextual Guidance. For LRS3, contextual guidance is
collected from both Kaggle and metadata from YouTube
links of the videos. For AVSpeech, nearly all samples (ap-
proximately 97%) are paired with video titles and descrip-
tions, which are directly extracted from their YouTube links.
The final statistics of contextual guidance and examples are
shown in Table 7.

To ensure consistency and usability, all collected infor-
mation went through a simple filtering process:

* Descriptions were truncated to three sentences or 100
words, whichever came first.

* Website URLs embedded in the descriptions were re-
placed with a generic placeholder, url, to produce con-
cise and clean text.

This filtering step aimed to retain only the most relevant and

readable portions of the content-related anchors.

Table 7. Overview of contextual guidance of LRS3 and
AVSpeech. Availability indicates proportion of samples.

Type Availability Example

LRS3

Scenario 100% A speech from TED talk

Speaker Name 99% Niels Diffrient

Speaker Tags 31% Designer

Speaker Description 31% Design legend Niels Diffrient is the creator of the ...
Speech Title 99% Rethinking the way we sit down

Speech Description 99% Design legend Niels Diffrient talks about his life in ...
AVSpeech

Title 99% Malware in the industrial world

Description 99% Dewan Chowdhury, MalCrawler A talk at Kaspersky ...

7. Implementation Details

For each video sample, the input consists of a sequence
of lip-centered regions of interest (ROIs), each cropped to
96 x 96 pixels from individual frames. This sequence is
processed by the visual encoder to extract the correspond-
ing visual features. We use the AV-HuBERT[39] Large



encoder, which outputs feature representations with a di-
mension of dy = 1024, while the large language model
LLaMA-3-8B-Instruct[10] has an embedding dimension of
d. = 4096. For downsampling by averaging, if the feature
sequence length is not perfectly divisible by the downsam-
pling factor, the last few feature frames are discarded until
divisibility is ensured. Within the LLM, the synergy LoRA
include a visual-specific module with a rank of 96 and an
alpha of 192, as well as a Mixture-of-Experts (MoE)-like
module applied to the complete input sequence. The MoE
module consists of K = 4 expert modules, each with a rank
of 8 and an alpha of 16. A dropout rate of 0.05 is applied to
all modules during training to enhance generalization. For
inguistic perturbations, random tokens or text fragments are
inserted into the sentence with a probability of 0.2, where
the inserted tokens have a length ranging from 8 to 16 to-
kens.

All models are trained for 8 epochs using the AdamW
optimizer and a reciprocal learning rate scheduler. The pro-
jector and synergy LoRA are trainable throughout duiring
the whole training process. The visual encoder is unlocked
for training during the last 4 epochs. And during last 4
epochs, we saved checkpoints every 0.5 epoch, which were
then averaged to produce the final model weights. During
inference, beam search with a width of 8 was employed.
All training and evaluations were conducted on § NVIDIA
A100 40GB GPUs.

8. Additional Experiments

We conducted a series of additional experiments to investi-
gate the impact of different components in our framework.
As the early-stage exploration, experiments in section 8.1,
8.2 and 9.1 differ slightly from the main experimental setup
and were performed using LLaMA-2-7B[44]. Specifically,
we employed the standard LoRA for fine-tuning the LLM,
with a rank of 256 and an alpha of 512. The model was
trained for 16 epochs, and the encoder was kept frozen un-
less otherwise stated. Despite these differences, it does not
affect the generality of the conclusions.

8.1. Necessity of the Visual Encoder

The visual encoder plays a crucial role in VSR systems by
processing and extracting meaningful visual features from
raw input videos. In our primary approach, peripheral infor-
mation and visual features are integrated as parallel inputs
to the LLM, enabling rich interactions between these two
modalities during decoding. To investigate whether visual
information is essential for effectively leveraging peripheral
information, we implement a variant that operates exclu-
sively in the text domain and compare it with our proposed
approach that embeds visual features.

Results are presented in Table 8. Specifically, we train
a baseline model (No.1 in the table), which consists of a

frozen AV-HuBERT encoder and a trainable 6-layer Trans-
former decoder. The generated Top-5 predictions are gath-
ered for our experiments. These predictions are then re-
fined using a LLM fine-tuned with or without contextual
guidance (No.2 in the table). This refinement process op-
erates solely in the text domain, where the LLM optimizes
the predictions based on contextual guidance. The prompt
templates used for this text-only refinement approach are
detailed in Table 17.

Table 8. Comparison of text-only refinement versus visual fea-
ture embedded approach. Contextual guidance mentioned in the
table includes speech title and description. Gray numbers indicate
relative decreases compared to baseline. Lower WER is better.

No. Configuration Model WER (%)
1 Best Hypothesis Baseline 29.4

Top-5 Hypotheses 29.2 (-0.2)

2 Top-5 Hypotheses + Contextual Guidance LLM w/LoRA 28.8 (-0.0)

3 Visual Feature Visual Feature Embedded  26.6 (-2.8)

Visual Feature + Contextual Guidance LLM w/ LoRA 24.7 (-4.7)

We observed two points: (i) Incorporating visual fea-
tures alone shows more effectiveness than text-only refine-
ment with Top-5 hypotheses. This gap suggests that visual
features preserve crucial speech characteristics that may be
lost in text hypotheses, providing a more reliable foundation
for further improvement with contextual guidance. (ii) The
impact of contextual guidance varies substantially between
the two approaches. With visual features, contextual guid-
ance brings an additional 1.9% WER reduction, whereas in
the text-only setting, it only contributes a 0.4% improve-
ment. This difference indicates that the semantic infor-
mation from contextual guidance can be more effectively
utilized when combined with detailed speech representa-
tions, as the model can better resolve ambiguities by align-
ing contextual peripheral information with visual features.
To summarize, preserving speech information through vi-
sual features is crucial for effective recognition. Text-only
approach, despite leveraging the same powerful language
model and contextual guidance, cannot fully compensate
for the absence of original speech signals.

8.2. Visual Encoder Selection

Having demonstrated the importance of visual features in
our framework, we further investigate how different vi-
sual encoders affect the model’s performance by compar-
ing three representative architectures from different train-
ing paradigms: AV-HuBERT [39], RAVEn [14], and Auto-
AVSR [27]. Each leverages a unique training approach,
where AV-HuBERT utilizes cluster-based self-supervised
learning (SSL), RAVEn employs the common cross-modal
masked prediction for SSL, and Auto-AVSR adopts end-to-
end (E2E) training for audio-visual speech recognition. We



adopt RAVEn Large® in the experiments for fair compari-
son, which has a similar model size to AV-HuBERT Large4
used in our submission. For Auto-AVSR, we only use its
VSR encoder trained on 1,759 hours of VSR data’ in an
E2E framework, as it achieves comparable performance to
AV-HuBERT Large and RAVEn Large on VSR tasks.

Table 9. Results under different visual encoders.

Visual Encoder WER (%)

AV-HuBERT[39] 26.6
RAVEN[14] 83.7
Auto-AVSR[27] —

Under the same training configuration (frozen encoder,
LoRA-tuned LLM, without peripheral information) as AV-
HuBERT, both the other two visual encoders exhibited sig-
nificant limitations, as shown in Table 9: RAVEn showed
inferior performance, while the Auto-AVSR encoder failed
to converge in training. RAVEn’s inadequate performance
in our achitecture aligns with the findings reported by Cap-
pellazzo et al. [7], where it fails to match the performance of
a frozen AV-HUBERT encoder even after fine-tuning. The
superior performance of AV-HUBERT could be attributed
to its cluster-based self-supervised leaning paradigm, which
enables learned representations to better align with phonetic
and linguistic information[31, 46, 50]. For Auto-AVSR,
we hypothesize that its convergence failure might be at-
tributed to its end-to-end surpervised training nature, where
the encoder’s features are specifically optimized for its cor-
responding decoder and may converge to local optima or
regions that are less adaptable to other decoders such as
LLMs when trained on limited labeled data (433 hours in
our case).

8.3. Effect of Different Large Language Models

Table 10. Results fo different LLMs on LRS3.

LLM LLaMA-2-7B  LLaMA-3.1-8B LLaMA-3.1-8B-Instruct
WER (%) 23.60 23.24 23.18

To investigate how different language models af-
fect the overall performance, we experimented three
model, LLaMA-2-7B[44], LLaMA-3.1 and LLaMA-3.1-
Instruct[10]. The results are reported under identical train-
ing conditions and peripheral information settings, shown
in Table 10. Improvements from LLaMA-2 to LLaMA-3
series suggest that advanced understanding and reasoning

3https://github.com/ahaliassos/raven
“https://github.com/facebookresearch/av_hubert
Shttps://github.com/mpc001/auto_avsr

capabilities of LLM contribute to more effective utilization
of peripheral information, leading to improved accuracy.

8.4. Effect of Down-sampling Strategies

Table 11. WER under different down-sampling rates and
methods.

Rate Method WER (%)
1x - 25.34
2% Concatenation 25.30

2x  Average Pooling 25.25
3x  Average Pooling 25.84

Due to the significant temporal disparity between visual
features (25 frames per second) and corresponding speech
text (around 2-3 words per second), we perform down-
sampling for the visual features to make the transition from
visual modality to LLM’s pre-learned textual space more
easily. Experiments were conducted with original LoRA
for LLaMA-3.1-8B-Instruct, and peripheral information is
not integrated. As shown in Table 11, a 2x average pool-
ing provides the optimal balance between performance and
efficiency. It slightly outperforms the model without down-
sampling as well as concatenation, while higher down-
sampling rates leads to performance degradation. Although
concatenation preserves more raw information, the model
may struggle to effectively align and utilize it, leading to a
marginal decline in performance.

9. Peripheral Information

9.1. Where different peripheral information work

Where Contextual Guidance works. To understand how
contextual information enhances recognition, we performed
an analysis on two types of overlap between contextual
guidance (CG) and ground truth (GT) transcripts: full word
overlap and content word overlap (excluding stopwords like
“the”, “is”’). As shown in Table 12, incorporating contextual
guidance reduces the error rate from 26.6% to 24.7%, while
the overall non-stopword overlap rate between CG and GT
is 8.1%. For overlapping stopwords, the accuracy improves
from 72% to 81%. However, this improvement only con-
tributes 0.7% to the total 1.9% error rate reduction. The
remaining comes from better recognition of common words
and sentence structure.

This result indicates that contextual guidance’s impact
extends beyond direct word matching. Firstly, it helps the
model generate more grammatically coherent sequences.
Moreover, it improves recognition accuracy for words not
present in the peripheral information. The model uses con-
textual guidance to build a semantic framework to better in-
fer and predict rather than simply matching keywords, lead-



Table 12. Analysis of Contextual Guidance (CG)’s impact.

Evaluation Metrics Configuration Value (%)

Overall Recognition Performance

w/o CG 26.6
WER w/ CG 24.7
Word Overlap Analysis
All words 26.9
CG-GT overlap rate wlo stopwords 3.1

Word accuracy in CG-GT overlap regions
w/o CG 72.0

Accuracy w/ CG 81.0

ing to more accurate and coherent transcriptions overall.

Where Task Expertise and Linguistic Perturbation
Works. In our evaluation, we categorized words into stop-
words and non-stopwords, calculating accuracy rates after
sequence alignment using edit distance. The alignment pro-
cess identifies substitution, deletion, and insertion errors by
matching each word in the hypothesis with the reference
transcript, ensuring a fair comparison across different word
types. To isolate the impact of each method, we conducted
controlled experiments comparing models with and with-
out task expertise and linguistic perturbation while keeping
all other conditions identical. In this experiment, we used
the prompt Transcribe the speech and then correct possible
errors to guide the model’s behavior. The generation con-
straint was set as Transcript after correction. Our accuracy
calculation only considers substitution errors (incorrect pre-
dictions) by dividing the number of correct predictions by
the total word count per category. Results are shown in Ta-
ble 13.

Table 13. Impact of task expertise and linguistic perturbation
on different word categories.

Stopword Non-stopword

Method Accuracy Accuracy WER (%)
VSR-adapted LLM 81.2 72.6 26.6
+ Task Expertise +1.5 +1.1 26.2
+ Linguistic Perturbation -0.2 -0.2 26.1

We observed that task expertise improved the accuracy
for stopwords and non-stopwords by 1.5% and 1.1% re-
spectively, indicating that human-sourced experiential in-
formation enhances word-level prediction accuracy. This
balanced improvement across word types suggests that task
expertise help on both functional errors (in stopwords) and
semantic errors (in content words). The improvement over
stopwords benefits from the linguistic rules presented by
LLM, and the improvement over content words may be ben-

efited from the common sense and the general priors learned
by LLM which helps to improve the predictions.

While linguistic perturbation shows a slight decrease of
about 0.2% in accuracy for both categories when consid-
ering only substitution errors, its improvement in overall
WER suggests that linguistic perturbation excels at main-
taining the prediction completeness. This finding indicates
that linguistic perturbation helps the model better under-
stand natural language flow and reduce errors such as word
omissions or redundant insertions, while making the model
more robust to irrelevant information in the input.
Different versions of speech descriptions in contextual
guidance. Three versions of speech description for LRS3
are used in our experiments as shown in Table 14, including
Raw, Filtered and Summarized. The Raw version refers to
the original unprocessed speech description obtained from
the source website. Since these descriptions often contain
irrelevant promotional content at the end and embedded hy-
perlinks throughout the text, we obtained a Filtered version
using simple rules as described in Appendix 6. To extract
concise and relevant information from original long and se-
mantically noisy speech descriptions for TED talks, we de-
signed a structured prompt shown in Table 17. This process
generates our Summarized version, where the assistant may
help remove semantically irrelevant content and maintain
consistency across summarie.

Table 14. Effect of Linguistic Perturbation under different
speech description settings. Character indicates the key proper-
ties of each description type, while WER shows performance with
/ without linguistic perturbation.

Speech Description Character WER (%)
Raw Long & Noisy 249/26.3
Filtered Short & Clean 2471249
Summarized Short & Formulaic 25.5/25.1

9.2. Further Discussion on Linguistic Perturbation

Prior studies in ASR [20] have leveraged title and descrip-
tion information associated with speech to enhance recog-
nition performance. They introduce context perturbations
during decoding to examine the model’s sensitivity to noise,
showing that the absence of context or its substitution with
random words from the training data leads to slight perfor-
mance degradation. Our work differs from it in three key
aspects:

First, rather than focusing solely on contextual guidance
in VSR, we broaden the perspective to consider both task
expertise and linguistic perturbations. We show that, under
an appropriate methodological framework, these factors can
positively contribute to recognition performance rather than
acting as detrimental noise.



Second, our approach that introduce linguistic perturba-
tion during training explicitly enhances the model’s ability
to process noise. In contrast to methods that only introduce
perturbations during decoding, we incorporate them at the
training stage while keeping contextual information intact.
During decoding, we remove these perturbations to preserve
clean input. Our method allows the model to generalize bet-
ter to diverse inputs.

Finally, we introduce a novel adaptation module, Syn-
ergy LoRA, that enables the effective integration of multi-
level information. This mechanism facilitates a more effi-
cient utilization of various linguistic cues, further improv-
ing robustness and generalization across different input sce-
narios.

9.3. Cases of Peripheral Information Benefits

Table 15 illustrates how different types of peripheral infor-
mation enhance recognition accuracy. Cases highlighted
in green represent better predictions using given peripheral
information, while those in red indicate cases where the
WER becomes worse. In Case 1 and 2, the speech title
and description provide semantic clues (underlined “disas-
ter” and “men”) that help recover key phrases, while the
model without them fails completely. Case 3 demonstrates
how scene information helps recognize common speech
phrases, correctly outputting the closing statement. Case
4 shows how our model successfully disambiguates phonet-
ically similar content, correctly recognizing “computers”.
These cases highlight how our peripheral information inte-
gration approach guides the model toward semantically co-
herent recognition, outperforming the context-free model.

We present more success and failure examples in Table
16. In the majority of successful cases in our experiments,
we observed that contextual cues are either directly or indi-
rectly connected with the spoken content to be recognized,
thereby providing substantial improvements. For instance,
in Case 1, the presence of “Biologist” and “tail” in the con-
textual information likely facilitated the prediction of “an-
imal” and “end”. In Case 2, although the introduction of
contextual information did not lead to completely accurate
sentence prediction, the correct prediction of the key word
“wash” significantly improved the semantic alignment with
the ground truth.

Analysis of failure cases reveals that errors often oc-
cur when the target utterance has limited relevance to the
general topic or provided contextual information, where
contextual guidance may potentially mislead the recogni-
tion process. As illustrated in Case 6, the presence of the
word “algorithms” in the speech title and description intro-
duced incorrect predictions, where “super real” was mis-
takenly recognized as “algorithm”. Future work should ex-
plore mechanisms that enable the model to selectively uti-

lize contextual information, distinguishing between relevant
and potentially misleading context.

10. Examples of Prompt Used in Our Work

Prompts for Peripheral Information Integration. Ta-
ble 17 illustrates the representative prompts under different
settings in our experiments. For example, when incorpo-
rating scenario contextual guidance and task expertise on
LRS3 dataset, we use “A speech from TED talk. Transcribe
the speech and then correct possible errors.” as the input
prompt. Similar patterns can be applied to generate other
prompts with different types of peripheral information.

11. More Visualizations

As shown in Figure 7, we conducted more visualizations of
the expert load in Synergy LoRA. Samples are randomly
selected from the LRS3 dataset.

Notably, at the 32nd attention layer, we observed a con-
sistent activation pattern. Different components of the in-
put, such as structural elements, instructional information,
and fine-grained descriptions, tend to activate specific ex-
perts with significantly higher weights. This suggests that
the MoE module effectively captures distinct types of infor-
mation, assigning specialized experts accordingly.

However, although the first attention layer also exhibits
some activation patterns, they are not as pronounced as
those in higher layers. A possible explanation is that lower
layers in LLMs generally focus on capturing basic lexical
or syntactic structures, whereas deeper layers tend to model
more abstract and contextual information.
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Table 15. Success Cases on the LRS3 test set.

Case 1 Scene: TED Talk
Instruction: A speech from TED talk. Transcribe the speech.

GT: thank you for your time

w/: thank you for your time

w/o: second verse time

Case 2 Speech Title: These robots come to the rescue after a disaster

GT: that was a huge problem at the haiti earthquake

w/: that was a huge problem at the hurricane earthquake

w/o: that was a huge problem in the ann

Case 3 Speech Title: The single biggest health threat women face
Description: Surprising, but true: More women now die of heart disease than men, yet cardiovascular research ...

GT: she had to impersonate a man

w/: she had to do impersonate a man

w/o: she had to do an emergency back

Case 4 Task Expertise Type A
Instruction: Transcribe the speech and correct possible errors.
Response: Transcript after correction: {transcript}

GT: you learn more about how computers work

w/: you’ll learn more about how computers work

w/o: to learn more about how you build this work

Case 5 Task Expertise Type B

Instruction: Please perform lip-reading while considering human experiential knowledge, such as common misinter-
pretations due to similar mouth shapes or lighting conditions that may obscure visibility, and account for potential
errors in distinguishing between phonemes.

Constrain: After carefully consideration, the identified sentence is: {transcript}

GT: your job needs to be challenging

w/: your job needs to be challenging

w/o: your job is to be challenging

GT: and then something falls off the wall

w/: and then something falls off the wall

w/o: and then something falls off the walk




Table 16. More Success and Failure Cases on the LRS3 test set.

Case 1 Scene: TED Talk Speech Title: Learning from the gecko’s tail
Description: Biologist Robert Full studies the amazing gecko, with its supersticky feet and tenacious climbing skill.
But high-speed footage reveals that the gecko’s tail harbors perhaps the most surprising talents of all.

GT: look at the end to see the animal

w/: look at the end of the animal

w/o: look at the editors of the camera

Case 2 Scene: TED Talk Speech Title: The simple power of hand-washing
Description: Myriam Sidibe is a warrior in the fight against childhood disease. Her weapon of choice? A bar of soap.

GT: did you learn to wash your hands at home

w/: did you learn to wash your hands the right way

w/o: did you learn to raise your hand to ask for help

Case3 Scene: TED Talk Speech Title: A global food crisis may be less than a decade away

Description: Sara Menker quit a career in commodities trading to figure out how the global value chain of agriculture
works. Her discoveries have led to some startling predictions: ‘“We could have a tipping point in global food and
agriculture if surging demand surpasses the agricultural system’s structural capacity to produce food,” she says.

GT: china is constrained in terms of how much more land it actually has available for agriculture and it has massive

w/: china is constrained in terms of how much more land it actually has available for agriculture and it has massive

w/o: chinese constrains determine how much more land it actually has available for agriculture and it has massive

Case 4 Scene: TED Talk Speech Title: 3 ways to fix a broken news industry
Description: Something is very wrong with the news industry. Trust in the media has hit an all-time low; we’re
inundated with sensationalist stories, and consistent, high-quality reporting is scarce, says journalist Lara Setrakian.

GT: i do believe we can fix what’s broken

w/: 1 do believe that we can fix what’s broken

w/o: i do believe we can fix what’s broken

Case 5 Scene: TED Talk Speech Title: The power of the informal economy

Description: Robert Neuwirth spent four years among the chaotic stalls of street markets, talking to pushcart hawkers
and gray marketers, to study the remarkable System D,the world’s unlicensed economic network. Responsible for
some 1.8 billion jobs, it’s an economy of underappreciated power and scope.

GT: there’s nothing underground about it

w/: there’s nothing on the ground about it

w/o: there’s nothing ungrounded about it

Case 6 Scene: TED Talk Speech Title: How algorithms shape our world

Description: Kevin Slavin argues that we’re living in a world designed for — and increasingly controlled by —
algorithms. In this riveting talk from TEDGlobal, he shows how these complex computer programs determine: es-
pionage tactics, stock prices, movie scripts, and architecture.

GT: it’s super real and it’s happening around you

w/: it’s an algorithm you feel that it’s happening around you

w/o: it’s in its humid real and it’s happening around you




Table 17. Examples of prompts and output constraint (when incorporating task expertise) in our experiments. Gray text includes
the dataset, experiment setting or purpose.

LRS3: Instruciton, without any peripheral information

Transcribe the video to text.

LRS3: Contextual Guidance (full) and instruction

A video clip from TED talk.\nSpeech Title: How the blockchain will radically transform the econ-
omy.\nDescription of the talk:\nSay hello to the decentralized economy — the blockchain is about to change
everything. In this lucid explainer of the complex (and confusing) technology, Bettina Warburg describes how
the blockchain will eliminate the need for centralized institutions like banks or governments to facilitate trade,
evolving age-old models of commerce and finance into something far more interesting: a distributed, transparent,
autonomous system for exchanging value.\nSpeaker: Bettina Warburg\nSpeaker tags: Blockchain entrepreneur
and researcher\nSpeaker description: Bettina Warburg is a blockchain researcher, entrepreneur and educator. A
political scientist by training, she has a deep passion for the intersection of politics and technology. \nTranscribe
the video to text.

LRS3: Contextual Guidance (Speech Title and description) and instruction

A video clip from TED talk.\nSpeech Title: How the blockchain will radically transform the econ-
omy.\nDescription of the talk:\nSay hello to the decentralized economy — the blockchain is about to change
everything. In this lucid explainer of the complex (and confusing) technology, Bettina Warburg describes how
the blockchain will eliminate the need for centralized institutions like banks or governments to facilitate trade,
evolving age-old models of commerce and finance into something far more interesting: a distributed, transparent,
autonomous system for exchanging value. \nTranscribe the video to text.

LRS3: Task Expertise Type A

Instruction: Transcribe the speech and then correct possible errors.

Constrain: Transcript after correction:{transcript}

LRS3: Task Expertise Type B

Instruction: Please perform lip-reading while considering human experiential knowledge, such as common mis-
interpretations due to similar mouth shapes or lighting conditions that may obscure visibility, and account for
potential errors in distinguishing between phonemes.

Constrain: After carefully consideration, the identified sentence is: {transcript}

LRS3: Text-only refinement w/o Contextual Guidance

### Instruction: You are familiar with visual speech recognition (VSR) and transcript re-scoring. You have a few
transcripts generated by a VSR model. Your task is to generate the most likely transcript from them. IMPOR-
TANT: Format your response as #transcript#. No other text should be included.\n \n ### Input: {nbest_list}\n
\n ### Response:

LRS3: Text-only refinement w/ Contextual Guidance

### Instruction: You are familiar with visual speech recognition (VSR) and transcript re-scoring. Your task is
to work with a speech from TED talk titled “{name}”. The description of this talk is “{description}”. Several
candidate transcripts have been generated by a VSR model for this speech. Your task is to generate the most likely
transcript from them. IMPORTANT: Format your response as #transcript#. \n \n ### Input: \n {nbest_list} \n
\n ### Response:

LRS3: Prompt for a Summarized version of peripheral information

This is a description of a ted talk, please summarize it concisely and comprehensively in a few sentences, within
{num} words. Begin with “A TED talk ...” Description: “{description}”
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