Robust and Efficient 3D Gaussian Splatting for Urban Scene Reconstruction

Supplementary Material

A. Our Datasets

The JNU-ZH and BigCity scenes were collected by our team
using drones, and their contents are shown in Figure 7.
We employ COLMAP’s hierarchical SfM [36] to perform
sparse reconstruction for both scenes. After finishing recon-
struction, we use COLMAP’s geo-registration to align the
reconstructed model with GPS coordinates. Subsequently,
we compute the Euclidean distance between the estimated
camera positions and their corresponding GPS coordinates.
Outliers with excessively large distances are discarded, as
they typically result from inaccurate pose estimations. This
filtering process helps mitigate the negative impact of erro-
neous data. Finally, we downsample the images to a maxi-
mum edge length of 1600 pixels for experimentation. When
partitioning, the sizes used for these two scenes are 180m
and 400m, respectively.

B. Implementation Details of Our Method

We implemented our method based on gsplat [50], which
offers higher computational and memory efficiency com-
pared to the [8].

The visibility threshold for dataset division is 1/6. We
use three detail levels for all scenes. The first and second
levels each last a base of 15,000 iterations, with densifica-
tion enabled. The third level runs for a base of 30,000 it-
erations, where densification is applied in the first half and
the second half is solely dedicated to optimizing properties.
Table 6 presents the hyperparameters for detail level gener-
ation in different scenes.

Scenes ‘ (BhBQ,Bg) x 100 (T17T2,T3) (Dl,DQ,Dg)
Rubble | (4096,8192,16384) (1/2,1/3,1)
JNU-ZH | (4096,8192,20480)  (300,200,100) (1/4,1/2,1)
BigCity | (2048, 8192,20480) (1/4,1/2,1)

Table 6. The hyperparameters for the detail level generation.

In practice, these iteration counts and densification in-
terval T are adjusted proportionally based on the num-
ber of images IV in each partition, scaled by a factor of
max(N/600,1).

In the appearance transform model, the MLP consist of
1 hidden layers with 32 channels, followed by a ReL.U ac-
tivation. The output layer followed by a sigmoid activation.
The Gaussian embeddings is 16-dimensional, while the im-
age embedding is 32-dimensional. The initial learning rate
for the MLP and embeddings is set to 0.01, and an exponen-
tial decay scheduler reduces it to a final value of 0.00025.

Every 50 iterations, we sample 20,480 Gaussians and select
k = 16 nearest neighbors to perform similarity regulariza-
tion, minimizing the computational overhead.

In the scale regularization, the value of sy is set to a
value corresponding to the typical size of most buildings in
the scene, and r,,, = 10.

In the in-partition prioritized densification, The value of
(Zmax is identical to the partition size. The maximum gradi-
ent threshold factor is 7 = 4. The minimum threshold is
Tmin = 0.0002 for the 1st and 2nd levels, and is 0.6 for the
3rd level with AbsGS [51] enabled.

C. Hyperparameters of Other Methods

For the 3DGS, large-scale scenes generally require more it-
erations for sufficient optimization. Therefore, the training
process was extended to 50 epochs, with densification en-
abled during the first 25 epochs. We also set the densifica-
tion interval to 1/6 of an epoch, ensuring a consistent num-
ber of densifications across all scenes. When the number
of input images is 600, these adjustments yield consistent
hyperparameter with the original settings.

For Switch-NeRF, we utilized the official open-source
implementation with its provided hyperparameters. When
conducting experiments on our own scenes, we proportion-
ally increased the number of training iterations based on the
number of input images.

For the remaining methods, we utilized their official
open-source implementations and use a similar number of
partitions to reconstruct all the scenes. When evaluating the
LOD mode of Hierarchical-3DGS, we used a granularity
setting value of 6 pixels.

Due to the large scale and intricate details of the BigC-
ity scene, none of the previous 3DGS-based methods can
complete the experiment within an 80GB memory limit.
Therefore, we made additional adjustments to the hyper-
parameters for these methods. For 3DGS, we double the
densification gradient threshold. For CityGaussian, during
the coarse training stage, we tripled the densification cycle
and doubled the densification gradient threshold compared
to the original settings. During the pruning stage, we in-
creased the pruning ratios from the default 40%, 50%, and
60% to 70%, 80%, and 90%. For Hierarchical-3DGS, the
excessive number of Gaussians made it impossible to evalu-
ate the non-LOD mode. When evaluating its metrics under
the LOD mode, we doubled the granularity settings from 6
pixels to 12 pixels. In contrast, our method can complete all
steps, except for the non-LOD mode, with memory usage
not exceeding 24GB.



(a) INU-ZH

(b) BigCity

Figure 7. Our datasets: JNU-ZH and BigCity.

D. Appearance Transform Module
D.1. Metric Calculation

Given that we have the appearance transform model, which
optimizes only the embeddings of training set images, we
followed a strategy similar to NeRF-W [21] to evaluate the
test set images. Specifically, when computing the metrics
for test images, we first optimize the image embedding ¢(7)
using the left half of the image and compute the metrics
using the right half. Each partition is transformed using the
embedding of the test image optimized within that partition,
ensuring appearance consistency. Then, we optimize the
embedding from scratch using the right half and computed
the metrics with the left half. Finally, the average of the
results from both rounds was taken as the final metric value
for the entire image. This approach prevents information
leakage and ensures fairness in the evaluation process. In
practice, we further smooth transitions between partitions
via weighted averaging.

D.2. Appearance Transformation

After reconstruction, our method enables scene appearance
transformation. Using the image embedding /(%) of a train-
ing image, we can synthesize novel views that match its ap-
pearance. As shown in Figure 8, this enables transforming
between different states of a building in the JNU-ZH scene.

E. Additional Experiments

E.1. Training Time Comparison

Table 7 presents the training times of all 3DGS-based meth-
ods. Except for 3DGS, all results were obtained under par-
allel training setups. The results show that our method is
also competitive in terms of training efficiency, consistently

ranking among the best or second-best. We are not consis-
tently the fastest due to the additional overhead introduced
by the Appearance Transform Module, anti-aliasing, and
various regularization mechanisms. Nonetheless, maintain-
ing such competitive efficiency despite these added com-
ponents demonstrates the effectiveness of our optimization
strategies.

It is worth noting that the Rubble and JNU-ZH are rela-
tively small, where parallel training provides limited bene-
fits. In contrast, the BigCity is significantly larger, and the
parallel setup leads to a substantial speedup.

Scenes | Rubble JNU-ZH  BigCity
3DGS 1.45 3.21 67.39
CityGaussian 2.33 2.49 4.01
Hierarchical-3DGS 1.00 2.18 1.71
Ours 1.30 2.14 2.01

Table 7. Comparison of training time (in hours). Except for
3DGS, the results of all other methods were obtained under paral-
lel training mode. VastGaussian is not included as it is not open-
sourced.

E.2. Additional Quantitative Comparison

Table 8 presents experimental results for the Building [42],
Residence, Sci-Art and Campus [17] scenes. The camera
poses are provided by Mega-NeRF. Overall, our method
demonstrates a clear advantage in nearly all quality-related
metrics. Although our method is not the most optimal in
terms of resource consumption and rendering speed, it re-
mains within a reasonable range and is close to the best-
performing approach. It fully ensures real-time rendering.
It is worth noting that our method can further reduce re-
source consumption by lowering the budget B. Figure 9



(a) Under maintenance, illuminated by the sunset.

(b) Maintenance completed, illuminated by overcast light.

Figure 8. Synthesis the two corresponding states from a new viewpoint based on the embedding vector provided by the reference

image (bottom right).

presents the visualization results for both scenes, demon-
strating that our method achieves higher detail preservation
and fewer artifacts.

E.3. Quantitative Comparison of Detail Levels

Table 9 compares the performance of our three detail levels.
The results show that all three levels achieve high recon-
struction quality. The lower levels exhibit higher numerical
values than the higher levels because they are trained and
evaluated using downsampled images. Additionally, com-
paring the #G across levels further confirms that our LOD
strategy effectively controls resource consumption.

E.4. Additional ablations

Table 10 presents the results of ablation studies on the anti-
aliasing, AbsGS, and tile-based culling components in our
method.

Anti-aliasing. The 1th row of Table 10 reports the impact of
anti-aliasing techniques. As shown in Figure 10a, it effec-
tively prevents jagged edges from appearing in areas with
low detail levels in images. However, this comes at the cost
of requiring more Gaussians. In the BigCity scene, since the
number of Gaussians has already reached the upper limit
without anti-aliasing, enabling anti-aliasing does not allow
for additional Gaussians, leading to a slight degradation in
metrics. Nevertheless, this feature remains beneficial as it
significantly enhances the visual experience.

AbsGS. The 2nd row of Table 10 provides the results ob-
tained without AbsGS, highlighting its contribution to qual-
ity metrics and enhanced detail restoration, as shown in
Figure 10b. While it does increase the number of Gaus-
sians in certain scenarios, the increase remains within an
acceptable range, ensuring that real-time rendering can still
be achieved within the constraints of 24GB of VRAM.
Tile-based culling. The 3rd row of Table 10 presents
the results without tile-based culling, illustrating its role
in rendering efficiency. Tile-based culling noticeable im-
proves rendering speed without negatively impacting ren-

dering quality. This is because it skips over redundant Gaus-
sians with minimal contribution, ensuring efficiency while
maintaining the desired quality.

E.5. Comparison of Gaussian Embedding Lengths

We evaluate the impact of the length of Gaussian embed-
ding on the JNU-ZH scene. As shown in Table 11, reducing
the length leads to a slight drop in metrics, but it is accept-
able if the goal is to reduce memory consumption.

E.6. Comparison of LOD Selection Parameters

We evaluate the impact of our LOD parameters on the
JNU-ZH scene. Table 12 presents the impact of different
rendering-time partition sizes on metrics. It can be ob-
served that while smaller partition sizes effectively reduce
the number of Gaussians and lower resource consumption,
they also lead to a certain degree of metric degradation. Ad-
ditionally, a larger number of partitions incurs higher over-
head due to the LOD selection. In contrast, larger partition
sizes exhibit the opposite behavior. This suggests that an
optimal partition size must strike a balance between effi-
ciency and rendering quality. Table 13 illustrates the impact
of different distance thresholds for detail levels. Increasing
the distance thresholds generally improves rendering qual-
ity but also leads to higher resource consumption and re-
duced rendering speed. Therefore, selecting an appropriate
distance threshold requires a trade-off between efficiency
and quality.

E.7. Evaluation of Similarity Regularization

Similarity regularization enhances the generalization ability
of the appearance transformation module. When perform-
ing out-of-domain inference, such as predicting the unob-
served regions of an image using its embedding, this reg-
ularization effectively mitigates abrupt color changes and
suppresses artifacts, as illustrated in the first row of Fig-
ure 11.



Scene ‘ Building ‘ Residence ‘ Sci-Art ‘ Campus

Metrics | SSIM PSNR LPIPS  #G FPS | SSIM PSNR LPIPS  #G  FPS | SSIM PSNR LPIPS #G FPS | SSIM PSNR LPIPS  #G FPS
Switch-NeRF 0579 2154 0474 - <01 0654 2257 0457 - <01[0795 2652 0360 - <0.1]0541 2362 0.609 - <01
VastGaussian 0.804  23.50 - - -] 0852 2425 - - -] 0885 2681 - - - | 0816 26.00 - - -
CityGaussian (no LOD) 0784 2196 0243 1330 37.6| 0813 2200 0211 1080 41.0 | 0.837 2139 0230 380 823 | 0666 19.61 0403 1641 35.1
Hierarchical-3DGS (no LOD) | 0.720  20.55 0270 1479 364 | 0753 1985 0230 13.68 399 | 0792 1985 0273 9.3 315 | 0741 2266 0297 2932 139
3DGS 0787 2242 0282 13.02 642 | 0807 2196 0256 7.06 1022 | 0.833 2126 0285 228 1724 | 0718 1983 0370 1055 185
Ours (no LOD) 0.808 2412 0219 1822 625 | 0845 2493 0201 1415 7015|0876 27.78 0190 839 869 | 0.788 26.63 0278 4242 385
CityGaussian 0769 2175 0257 349 8360805 2190 0217 3.3 657 | 0833 21.34 0232 177 1134 N/A(encountered a bug)

Hierarchical-3DGS 0695 2018 0296 659 463 | 0741 1970 0243 1001 442 | 0788 1982 0278 6.67 360 | 0.724 2243 0316 1055 185
Ours 0799 2403 0233 518 82.0 | 0.818 2432 0232 409 909 | 0.859 27.09 0.208 279 994 | 0.778 2641 0293 568 937

Table 8. Quantitative evaluation on Building, Residence, Sci-Art and Campus. The results for VastGaussian are only partially available
as it is not open-sourced and can only be obtained from its paper. All missing results are denoted by a “-”.

Ground Truth 3DGS i CityGaussian Hierarchial-3DGS Ours

Figure 9. Visualization results on Building, Residence, Sci-Art and Campus of ours and previous work. All methods, except for 3DGS,
render in LOD mode. The LOD mode of CityGaussian encountered a bug in the Campus, resulting in a completely black rendered image.

The second row of Figure 11 presents a statistical anal- the emergence of artifacts.
ysis of the similarity among Gaussians within a small local
region, where 513 Gaussians are selected, and the similar-
ities between 512 of them and a central reference Gaus-
sian are computed to generate a histogram. In the ab-
sence of similarity regularization, most Gaussians exhibit
low similarity, clustering around 0.1. Such low similarity
results in significant differences in appearance transforma-
tions among Gaussians, leading to visible artifacts. In con-
trast, with similarity regularization applied, the similarity
values among Gaussians predominantly exceed 0.8. This
high degree of similarity ensures more consistent appear-
ance adjustments across Gaussians, effectively preventing



Scene | Rubble | JNU-ZH | BigCity
Metrics | SSIM PSNR LPIPS  #G | SSIM PSNR LPIPS  #G | SSIM PSNR LPIPS  #G

Istlevel | 0.870 28.34 0.153 3.71 | 0.889 2657 0.114 541 | 0925 2748 0.098 10.38
2ndlevel | 0.825 27.16 0224 7.13 | 0.835 2574 0.197 1399 | 0.855 26.10 0.198 30.47
3rdlevel | 0.826 2729 0.228 13.52 | 0.822 2585 0.232 2558 | 0.847 26.62 0219 75.15

Table 9. Quantitative evaluation of all the levels of our method, evaluated using the same downsampling factor as during training.

Scene | Rubble | JNU-ZH | BigCity

Metrics | SSIM PSNR LPIPS #G FPS | SSIM PSNR LPIPS #G FPS | SSIM PSNR LPIPS #G FPS
w/o anti-aliasing 0.817 26.85 0237 3.02 103.5| 0.817 2569 0.233 492 67.8 | 0.847 26.52 0.213 6.68 73.6
w/o absgrad 0.795 26.67 0275 3.15 109.8 | 0.808 25.53 0.251 6.78 68.3 | 0.831 2628 0.244 6.74 78.1
w/o tile-based cull. | 0.814 27.03 0245 3.60 83.0 | 0.816 2571 0240 6.65 54.6 | 0.838 2641 0231 684 658
full 0.814 27.03 0.245 360 99.7 | 0.816 2571 0240 6.65 639 | 0.838 2641 0.231 6.84 73.0

Table 10. Additional qualitative ablations.

Anti-Aliasing AbsGS

(a) ()

Figure 10. Visualization results of ablation on Anti-Aliasing and AbsGS.

Length ‘ SSIM PSNR LPIPS

4 0.816 25.58 0.237
8 0.815 25.62 0.240
16 0.822 25.85 0.232

Table 11. The impact of the length of ¢(9),

Part. Size ‘ SSIM PSNR LPIPS FPS #G (105 #P

45m 0.803 2527 025 359 2.11 860
90m 0.808 2546 0250 61.7 3.06 228
135m 0.810 2550 0.247 644 3.68 140
180m 0.813 25.62 0.243 63.1 5.19 64

Table 12. Qualitative ablations of different rendering-time partition size on the JNU-ZH scene. #P represents the number of partitions.



Distances ‘SSIM PSNR LPIPS FPS #G (10%)

(45m, 90m, o0) 0.789 25.00 0.271 66.5 2.40
(90m, 180m, co) | 0.808 2546 0.250 61.7 3.06
(135m, 270m, co) | 0.815 25.65 0.242 58.8 3.62
(180m, 360m, co) | 0.818 25.73 0.238 56.2 4.13

Table 13. Qualitative ablations of distance thresholds on the JNU-ZH scene with a partition size of 90m. The distance values represent
the maximum distances at which the 3rd, 2nd, and 1st LOD levels are used.
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Figure 11. A visual comparison of results with and without similarity regularization.
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