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A. Appendix Section
In the supplementary materials, we present additional results
from the SPD evaluation. We begin by detailing the training
process of SPD, followed by an analysis of how network
architecture influences its effectiveness. Next, we examine
SPD’s attack performance under the all-to-all setting and
assess its robustness against backdoor mitigation defenses.
Finally, we examine the impact of α on the stealthiness of
SPD through detailed image analysis.

Table 1. Details of the datasets leveraged in the SPD evaluation.

Dataset Labels Image size Training set Test set Model

CIFAR-10 10 32 × 32 × 3 50000 10000 ResNet-18

GTSRB 43 32 × 32 × 3 39209 12630 ResNet-18

ImageNet-12 12 224 × 224 × 3 12406 3120 ResNet-34

A.1. Training details
We select three benchmark datasets, including CIFAR-10,
GTSRB, and ImageNet-12 (a subset of ImageNet [1]), to
evaluate SPD and the baseline backdoor attacks. The details
of these datasets are summarized in Table 1. For CIFAR-
10 and GTSRB, we inject backdoors into ResNet-18 [2]
models, and for ImageNet-12, we use a ResNet-34 [2] model.
The hyperparameter α is set to 5.0 for CIFAR-10, 20.0 for
GTSRB, and 5.0 for ImageNet-12. The optimizer is SGD
with momentum 0.9, with batch sizes of 128 for CIFAR-10,
32 for GTSRB, and 16 for ImageNet-12. The learning rate η
is 0.01, and weight decay is 0.0005. Both training epochs Tc

and Tb are set to 100, where the MultiStepLR decay strategy
with milestones at [30, 60, 90] is deployed, and decay factor
γ is set to 0.1. The target label of SPD is 0. The trigger size
in the shallow backdoor is 2 for CIFAR-10 and GTSRB, and
8 for ImageNet-12.

Table 2. Influence of the network structure on the attack perfor-
mance of SPD. ASR: Attack Success Rate (%); CA: Clean Accu-
racy (%). The best results are boldfaced.

Dataset Metric ResNet-18 VGG-16 MobileNet-V2

CIFAR-10
ASR 99.91 99.93 99.98
CA 94.38 90.49 90.69

GTSRB
ASR 99.98 99.91 99.68
CA 98.57 96.09 96.19

A.2. Influence of network structure
To evaluate the influence of different network architecture on
the performance of SPD, we select three different networks,

including ResNet-18 [2], MobileNet-V2 [4], and VGG-16
[5].

Table 2 illustrates the impact of different network struc-
tures on the attack performance of SPD on CIFAR-10 and
GTSRB. The results show that the ASRs for all network
structures are close to 100%, indicating that SPD achieves
extremely high attack performance across these networks.
Meanwhile, the CA varies with different network structures:
on CIFAR-10, ResNet-18 achieves the highest CA (94.38%),
followed by MobileNet-V2 (90.69%), while VGG-16 has a
relatively lower CA (90.49%). The evaluate results demon-
strate that the network structures do not affect the attack
performance of SPD.

Table 3. Attack effectiveness of SPD and the baseline backdoor
attacks on CIFAR-10, GTSRB under the all-to-all setting. ASR:
Attack Success Rate (%); CA: Clean Accuracy (%). The best
results are boldfaced.

Dataset Metric BadNets Blended Bpp IAD WaNet Ftrojann SIG Refool SSBA SPD

CIFAR-10
CA 93.92 93.66 91.98 91.14 91.70 93.65 93.68 92.68 93.57 94.32

ASR 89.71 86.24 88.23 87.53 88.84 92.72 90.54 82.86 88.45 95.20

GTSRB
CA 99.34 99.22 98.85 98.14 98.90 99.11 99.20 97.52 98.86 98.36

ASR 98.06 97.85 96.18 95.45 96.29 99.02 98.85 79.28 97.10 98.28

A.3. Attack performance with all-to-all setting
In backdoor attacks, common attack settings include all-to-
one and all-to-all. The all-to-one setting means that the target
label in the backdoor attack is fixed, and all samples with
triggers will be classified into the target label. In contrast,
the all-to-all setting means that the target label in the back-
door attack is the next label of the ground-truth label of the
backdoor sample. Specifically, the target label t is set as:

t = (y + 1) mod N (1)

where y is the ground-truth label of the backdoor sample, and
N is the number of classes. In this paper, we have demon-
strated the effectiveness of the SPD attack under the all-to-
one setting. Here, we examine the performance of SPD under
the all-to-all setting on CIFAR-10 and GTSRB.

In the all-to-all attack setting, the model must simulta-
neously consider both the trigger features and the sample
features to activate the target class. In contrast to the all-
to-one setting, where the model relies solely on the trigger
features to activate the target class, the all-to-all setting in-
creases the complexity of backdoor attacks, which in turn
reduces the ASRs of the attacks. Table 3 presents the evalua-
tion results of these backdoor attacks. On CIFAR-10, SPD



Table 4. Resilience of SPD and the baseline backdoor attacks against existing backdoor mitigation methods on CIFAR-10 and GTSRB. ASR:
Attack Success Rate (%); CA: Clean Accuracy (%). The best results are boldfaced.

Dataset
Attack → BadNets Blended Bpp IAD WaNet Ftrojann SIG Refool SSBA SPD

Defense ↓ ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR-10

ANP 0.00 87.06 21.53 86.75 0.84 85.78 0.82 91.13 0.57 91.61 0.15 4.61 0.01 86.15 2.42 91.62 0.81 85.14 0.36 85.62
I-BAU 85.43 85.40 73.63 77.55 86.68 89.80 21.62 88.80 3.46 88.51 95.54 85.34 99.50 83.35 26.80 85.04 55.16 85.08 0.32 88.81
SAU 2.77 88.20 11.33 87.15 4.88 88.76 3.13 89.67 1.72 88.90 0.07 90.18 0.06 89.28 1.21 87.47 1.31 88.98 24.44 90.95
FT-SAM 0.62 90.94 74.37 91.39 01.44 92.31 0.95 91.99 1.67 92.15 1.78 91.35 33.60 91.33 9.25 91.13 03.96 91.18 1.91 92.68
NC 1.04 91.92 1.66 90.48 2.58 92.04 2.47 88.68 76.97 90.92 1.21 91.63 100.00 93.22 93.68 92.08 2.44 80.83 99.90 93.43

GTSRB

ANP 0.02 98.74 5.68 94.06 0.00 98.93 0.00 98.02 0.00 97.49 0.01 98.09 0.00 96.89 91.75 97.05 48.20 98.25 0.00 90.09
I-BAU 14.39 47.98 100.00 10.29 2.05 93.22 3.90 93.41 0.42 94.42 0.00 47.74 100.00 65.66 1.95 94.39 89.61 97.52 70.42 91.67
SAU 0.00 94.52 18.40 93.83 0.03 97.75 0.00 94.48 0.05 96.84 0.02 97.34 0.00 96.38 22.17 97.74 0.00 97.99 23.56 98.09
FT-SAM 0.03 98.18 74.39 98.37 0.08 98.77 0.96 98.99 0.03 99.31 0.00 98.26 98.16 98.28 62.68 98.28 99.69 98.06 0.05 98.85
NC 0.04 98.37 0.08 97.22 0.00 98.73 93.49 6.41 0.08 98.81 100.00 98.42 0.30 96.24 33.31 97.14 0.00 98.51 99.88 98.64
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Figure 1. Backdoor samples of SPD with different α on ImageNet-12.

achieves the highest ASR and CA, with values of 95.20%
and 94.32%, respectively. On GTSRB, Ftrojann achieves the
highest ASR at 99.02%, while BadNets yields the best CA
99.34%. The experimental results demonstrate that, com-
pared to other backdoor attacks, the all-to-all attack setting
has the least impact on the ASR of SPD.

A.4. Resilience against backdoor mitigation
To evaluate the resistance of SPD against existing backdoor
mitigation techniques, we select several state-of-the-art back-
door mitigation methods including NC [6], I-BAU [10], ANP
[9], FT-SAM [11], SAU [7]. Note that these backdoor de-
fense methods are implemented with the open-source codes
in BackdoorBench [8] or their official open-source codes
using their default settings. Following the established work
[3], in these backdoor mitigation methods, 1% of benign
samples are provided to repair the backdoor models.

Table 4 demonstrates the resilience of SPD and the base-
line backdoors against existing backdoor mitigation methods
on CIFAR-10 and GTSRB. We observe that NC cannot miti-
gate the SPD backdoor attack, i.e., the ASR of the repaired
model on CIFAR-10 and GTSRB are 99.90% and 99.88%,
respectively. However, other backdoor mitigation methods
can effectively reduce the ASR of SPD. For instance, on
CIFAR-10, ANP reduces the ASR of SPD to nearly 0%,
and FT-SAM reduces it to 0.05%. Additionally, we note that
while some backdoor attacks can effectively resist certain
mitigation methods, such as NC being unable to mitigate the
SIG backdoor on CIFAR-10, no single backdoor attack can
completely bypass all backdoor mitigation methods.

Moreover, the premise of backdoor mitigation is that
a backdoor has been detected in the model. If a model is
repaired without knowing whether it contains a backdoor, its
generalization ability will inevitably be reduced. Therefore,



if a backdoor attack can evade detection, it may escape repair
and subsequently launch a successful attack.

A.5. Discussion details about α
In the paper, we have quantified the impact of α on the
stealthiness of SPD attacks using PSNR and SSIM. Here,
we visually demonstrate the impact of α on the stealthi-
ness of SPD attacks through the image details. We conduct
SPD backdoor attacks on several ResNet-34 models using
ImageNet-12, with α set to 5.0, 10.0, 20.0, and 50.0, re-
spectively. Figure 1 shows the backdoor samples of SPD
corresponding to different α. In general, the difference be-
tween the backdoor samples and clean samples is minimal,
especially when α is large. However, when α is small, such
as α = 5.0, some backdoor samples still exhibit slight per-
turbations compared to clean samples, particularly in the
lighter background areas. And when the content of the sam-
ples becomes more complex, these slight perturbations also
become difficult to perceive.
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