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7. Grouped Neural Vertex with Dynamically
Weighted Compositional Contrastive Learn-
ing

In this section, we provide further details about our proposed
Grouped Neural Vertex with Dynamically Weighted Com-
positional Contrastive Learning. How our model samples
vertex features for the cross-category loss Lcross is outlined
in subsection 7.1. Additionally, we include the confusion
matrix for the Dynamically Weighted Compositional Con-
trastive method on the calibration dataset in subsection 7.2.

Figure 6. In our grouped cross-category contrasting, we contrast
every vertex feature from category y(yellow cube) to only a small
subset of the vertex features from each other category y′(blue cube).

7.1. Grouped Neural Vertex Contrasting

As described in subsubsection 3.3.1, we sample a small fixed
amount of vertex features Cm ∼ S(Cy′) from each category
y′ ∈ Y ′, Y ′ = Y \{y} as negative samples contrasting with
vertex feature Ck ∈ Cy of category y. As illustrated in Fig-
ure 6, previous contrastive learning in NOVUM conducts a
per-vertex contrasting on all the categories. Our Grouped
Neural Vertex Contrasting largely reduced the compute by
contrast every vertex feature from category y(yellow cube)
to only a small subset of the vertex features from each other
category y′(blue cubes). The ablation study on how many
vertex features from each category y′(blue cubes) are se-
lected can be found in Table 1. We find that 32 are enough
for efficient and effective cross-category contrastive learning.

7.2. Dynamically Weighted Compositional Con-
trasting

We provide the ten most confused categories ranking in the
orders of confusion level in Table 5.

Table 5. Most confused categories from the confusion matrix on
calibration set.

confusion True label Pred label
0.55 jar pot
0.38 bookshelf cabinet
0.32 bicycle pump micrometer
0.32 washing machine washer
0.26 pencil pen
0.25 air hammer power drill
0.25 bumper car go kart
0.21 bicycle built for two bicycle
0.21 vending machine refrigerator

8. Contribution of In-category loss and Cross-
category loss

We presents additioanl ablation analysis on the contributions
of in-category loss and cross-category loss. Table Table 6
In-category loss focuses on distinguishing between vertices
inside an object, thus mainly helping pose estimation by iden-
tifying different parts of the object, while the cross-category
loss benefits classification because it separates vertices from
other object categories.

Table 6. Ablation study of individual loss contributions (accuracy
↑) on in-distribution testing with 188 ImageNet3D categories.

Loss Classification Pose estimation

Intra-category only 17.8 56.7
Cross-category only 90.1 1.3

Both (Ours) 93.5 57.6

9. Error Case Analysis
Through per-category analysis on the IID performance, we
found our 3D-compositional model performs less satisfacto-
rily on elongated object classes, see Figure 7 for examples.
The reason is that these objects look very similar, and some-
times even identical when facing forward and backwards, left
and right, or when rotated along their dominant geometric
axis. This ambiguity causes the main difficulty in learn-
ing distinct vertex features. Removing the elongated object
classes from ImageNet3D+ leads to further improvement by
our model. The 10 elongated objects are ”ax”, ”paintbrush”,
”bow”, ”comb”, ”fork”, ”hammer”, ”french horn”, ”knife”,
”pen” and ”pencil”. By removing them from the testing data
only, our model performance increases in both classification
and 3D pose estimation(see Table 7).

From the confusion matrix we obtained from the testing



set, we found that confusion always appears between visually
similar object categories. The most confused categories are
”air hammer”/”power drill” and ”backpack”/”suitcase”, as
shown in Figure 8 More details can be found in appendix.

Figure 7. Example images of elongated objects in the ImageNet3D+
dataset. From left to right and top to bottom, the object classes are
”comb”, ”fork”, ”pen” and ”pencil”.

Figure 8. Example images the most confused classes by our model:
25% of ”air hammer” are predicted ”power drill” and 16% of
”backpack” are predicted as ”suitcase”.

Classification
IID Occ. Corr.

All classes 88.2 38.8 57.9
w/o Elongated 89.3 39.7 58.5

3D Pose Estimation
IID Occ. Corr.

All classes 57.6 29.5 45.7
w/o Elongated 59.3 32.8 48.3

Table 7. The classification and pose estimation results by our model
on the object classes including and excluding the ten elongated
objects. Occlusion and Corruption results are averaged.

10. Visualizations
10.1. Synthetic dataset visualisation
In order to evaluate our method in many different settings,
we generated 3D consistent data following [22]. Given some
3D CAD models, we were able to generate data with known
objects class an 3D pose annotation. The usage of synthetic
data is appealing since it allows to control many parame-
ters during the dataset generation. Benchmark datasets like
ImageNet3D can have certain bias (e.g., imbalance in the

number of objects per class). Hence, we decided to generate
synthetic images to measure our model’s capacity to adapt
to domain shift (i.e., real-to-synthetic generalization). In
order to show the quality of the generated images, we show
a subset of the generated data in Fig. 9.

(a) Synthetic, phone (b) Synthetic, table (c) Synthetic, bike

(d) Synthetic, car (e) Synthetic, armchair (f) Synthetic, couch

Figure 9. Visualisation of the generated synthetic data.

(a) Clean image: door (b) L2 Occlusion: fire extinguisher

(c) Fog corrupted image: guitar (d) Pixelate corrupted image: shovel

Figure 10. Qualitative results showing the predictions of our ap-
proach for classification and 3D pose estimation

10.2. Qualitative results
We provide a few qualitative results in Fig. 10. We provide an
example for the clean images of ImageNet3D+, an example
of synthetic occlusion of occluded-ImageNet3D+, and two
examples of corrupted images (notably fog and pixelate).
We represent side-by-side the input image along with the
input image overlaid by the prediction of our approach. We
selected the CAD model of the class that was predicted by
our approach and we overlaid the CAD model in the pose
predicted by our approach.


