
StyleSRN: Scene Text Image Super-Resolution with Text Style Embedding

Supplementary Material

In this supplementary file, we provide:
1. Detailed descriptions of five manually degraded scene

text recognition datasets.
2. More ablation experiment results.
3. More comparison with State-of-the-arts.

1. Scene Text Recognition Datasets
1.1. Description of Scene Text Recognition Datasets
The ICDAR13 [5] test dataset predominantly inherits data
from IC03 [7], comprising 1,015 ground-truth cropped
word images. ICDAR15 [6] consists of scene images and
is available in two versions: 1,811 images (IC15S) and
2,077 images (IC15L). For our experiments, we utilized
the IC15S subset. This dataset is characterized by images
that are noisy, blurred, contain complex backgrounds, and
often feature low resolution, posing significant challenges
even for human text recognition. CUTE80 [14] comprises
288 images with heavily curved text. The SVTP (Street
View Text Perspective) [13] dataset contains 645 images
with texts captured in perspective views. IIIT5K [11] in-
cludes 5,000 cropped word images, divided into 2,000 train-
ing images and 3,000 testing images. The test set was used
for our experiments.

1.2. Degradation Settings
Following previous studies [4, 9], we manually degraded
the images from the five datasets to simulate various real-
world degradation processes. Initially, we applied pre-
blurring using randomly selected Gaussian kernels of size
3 × 3 or 5 × 5 with σ uniformly sampled within the range
[5, 6]. Next, with an 80% probability, random Gaussian
noise was added to the images. Subsequently, a Gaussian
blur was applied with a 70% probability, using σ uniformly
sampled between [2, 3] for noise reduction; otherwise, bi-
lateral filtering was employed. Finally, the images were
sharpened using Gaussian kernels of size 3 × 3 or 5 × 5
with σ uniformly sampled within the range [2, 3] to produce
the degraded results.

2. More Ablation Studies
In this section, we conduct a comprehensive series of ab-
lation studies to further analyze the effectiveness of the
proposed components and design choices in our method.
Specifically, we begin by evaluating the impact of balanc-
ing parameters in the overall loss function, focusing on the
contribution of the proposed Text Style Loss to image qual-
ity and text recognition accuracy. Next, we investigate the

β
Quality Metric Accuracy(%)

PSNR SSIM CR [15] MO [8] AS [16]
0 20.34 0.7611 54.9 60.8 63.8

0.1 20.96 0.7663 55.6 62.5 65.7
0.5 21.82 0.7778 56.1 63.5 66.3
5 21.71 0.7768 55.0 61.6 65.0
1 21.87 0.7784 57.4 64.1 67.3

Table 1. Ablation studies on different β values. AS, MO and CR
refer to ASTER [16], MORAN [8] and CRNN [15], respectively.

influence of multi-scale 1D convolution kernels, comparing
fixed-size kernels with various multi-scale combinations to
highlight their importance in capturing diverse text features.
Finally, we examine the role of different text prior genera-
tors, demonstrating how varying text priors influence the
model’s ability to reconstruct both the structural and stylis-
tic features of text. These studies provide a deeper under-
standing of the key factors contributing to the performance
of our StyleSRN model and validate the robustness of our
design choices.

2.1. Selection on the Balancing Parameters of the
Text Style Loss Function

In the Overall Loss section of the main text, the overall loss
function is defined as follows:

L = L2 + αLTP + βLstyle (1)

where α and β are balancing parameters.
Following previous research[4, 9, 17], we initially fixed

α at 0.5. We then varied the coefficient β of our proposed
Text Style Loss to identify the optimal value in terms of
recognition accuracy and image quality metrics. As shown
in Table 1, both the average recognition accuracy and SSIM
improve as β increases. However, when β exceeds 1, all
evaluation metrics decline, indicating that an excessive em-
phasis on text style loss can detrimentally affect the quality
of text reconstruction. Consequently, we set β to 1.

2.2. Impact of Multi-Scale 1D Convolution Kernels
To evaluate the impact of different 1D convolution kernel
configurations on the performance of our model, we con-
ducted an ablation study using fixed-size kernels (3×3, 5×5,
7×7) and various multi-scale combinations. The results
are presented in Table 2, which reports PSNR, SSIM, and
recognition accuracy using CRNN [15] on the TextZoom
dataset [17]. The findings demonstrate that single fixed-
size kernels achieve acceptable performance, with the 3×3
kernel obtaining a PSNR of 21.70 and an SSIM of 0.7751,



Kernel Size Kernel Type Quality Metric AccuracyPSNR SSIM
3×3 fixed 21.70 0.7751 56.5
5×5 fixed 21.63 0.7755 56.3
7×7 fixed 21.55 0.7750 56.1
3×3, 5×5 multi-scale 21.78 0.7754 56.4
3×3, 7×7 multi-scale 21.71 0.7757 56.7
5×5, 7×7 multi-scale 21.75 0.7765 56.9
3×3, 5×5, 7×7 multi-scale 21.82 0.7778 57.4

Table 2. Ablation study on multi-scale 1D convolution kernels.
Accuracy represents the accuracy of CRNN [15] on TextZoom
[17].

outperforming the larger 5×5 and 7×7 kernels slightly.
This suggests that smaller kernels may better capture fine-
grained features relevant to text reconstruction. However,
the performance improves when combining multiple kernel
sizes. For instance, the combination of 5×5 and 7×7 ker-
nels increases SSIM to 0.7765 and recognition accuracy to
56.9%. The best results are achieved using all three kernel
sizes (3×3, 5×5, and 7×7) simultaneously, yielding a PSNR
of 21.82, an SSIM of 0.7778, and a recognition accuracy of
57.4%. These results highlight the effectiveness of multi-
scale 1D convolution kernels in capturing diverse text fea-
tures and improving both image quality and text recognition
accuracy. The improvement achieved by multi-scale kernels
can be attributed to their ability to model cross-channel de-
pendencies at different scales, thereby enhancing the repre-
sentation of stylistic and structural features in scene text im-
ages. These results validate the design choice of incorporat-
ing multi-scale 1D convolution kernels into our StyleSRN
architecture.

2.3. Impact of Different Text Prior Generators

We assessed the effect of generating text priors on model
performance using six widely used scene text recognizers,
including CRNN [16], MORAN [8], ASTER [16], ABINet
[3], MATRN [12], and PARSeq [1]. The impact of different
text prior generators on our method is presented in Table
3. The results indicate that more powerful text recognizers
lead to a significant improvement in recognition accuracy,
which is intuitive since they can generate more accurate text
priors. However, the image quality metrics do not exhibit a
corresponding significant improvement. Additionally, more
powerful text recognizers such as ABINet, MATRN, and
PARSeq have higher parameter counts and computational
complexity, which reduces the inference speed of the STISR
model. Therefore, we selected ASTER as the text prior gen-
erator to better balance the trade-off between image quality,
recognition accuracy, and inference speed.

TPG Quality Metric Accuracy(%)
PSNR SSIM CR [15] MO [8] AS [16]

CRNN [15] 21.65 0.7757 55.1 62.6 65.4
MORAN [8] 21.77 0.7765 56.5 63.6 66.4
ASTER [16] 21.82 0.7778 57.4 64.3 67.3
ABINet [3] 21.75 0.7766 57.9 65.0 68.1
MATRN [12] 21.80 0.7763 58.0 65.1 68.4
PARSeq [1] 21.69 0.7770 58.5 66.6 69.2

Table 3. Comparison on Image Quality Metric and Recognition
Accuracy using different Text Prior Generator(TPG) to produce
text prior. AS, MO and CR refer to ASTER [16], MORAN [8] and
CRNN [15], respectively.
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Figure 1. Recognition accuracy with different text lengths on
TextZoom.

3. More comparison with State-of-the-arts
3.1. Experiment on Scene Text Images of Different

Lengths
In real-world scenarios, the length of scene texts varies,
and recognizing longer texts can be particularly challeng-
ing. Therefore, evaluating the ability of STISR methods to
handle scene texts of different lengths is crucial for mea-
suring their overall performance. We compared the per-
formance of different STISR methods on texts of varying
lengths using the TextZoom [17] dataset. As illustrated in
Figure 1, the proposed method performs well across almost
all text lengths, demonstrating its robustness in dealing with
scene texts of varying lengths.

3.2. Comparison Results on Image Quality on Five
Scene Text Recognition Datasets

The comparative results of PSNR and SSIM are presented
in Table 4. Our method demonstrates competitiveness in
SSIM and outperforms other methods in PSNR. This per-
formance may be attributed to our method’s emphasis on
recovering text style information, which involves making



Method ICDAR13 [5] ICDAR15 [6] CUTE80 [14] SVTP [13] IIIT5K [11]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TSRN [17] 21.74 0.8366 22.89 0.8338 20.48 0.8167 22.21 0.8086 19.07 0.7567
TBSRN [2] 21.62 0.8301 22.31 0.8164 20.73 0.8151 21.41 0.7877 19.00 0.7587
TPGSR [10] 21.47 0.8211 21.97 0.8124 19.54 0.7990 21.45 0.7861 18.50 0.7396
TATT [9] 21.08 0.8304 21.46 0.8212 18.77 0.8096 20.87 0.7961 18.13 0.7533
LEMMA [4] 21.46 0.8159 21.90 0.8038 18.80 0.7868 21.28 0.7809 17.95 0.7334
StyleSRN 22.71 0.8230 23.77 0.8125 21.21 0.8033 23.01 0.7886 19.58 0.7490

Table 4. Comparison of Image Quality on Six Scene Text Recognition datasets. Bold text and underlined text indicate the best and the
second-best performances, respectively.

Method Accuracy of ABINet [3](%) Accuracy of MATRN [12](%) Accuracy of PARSeq [1](%)
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

BICUBIC 77.9 57.0 42.7 60.3 80.9 59.0 45.1 62.8 90.2 75.5 56.8 75.2
TBSRN [2] 79.8 65.0 48.5 65.4 81.7 66.0 50.1 66.9 83.7 66.7 51.8 68.4
TATT [9] 80.7 65.8 50.3 66.5 81.1 66.6 51.7 67.4 82.2 65.9 52.1 67.7
C3-STISR [18] 81.4 66.9 49.9 67.0 81.9 68.0 51.1 68.0 84.3 68.3 50.9 68.8
LEMMA [4] 82.2 69.2 50.6 68.5 82.8 70.4 51.7 69.3 83.6 69.2 52.3 69.3
StyleSRN 86.2 69.5 53.8 70.9 86.5 70.8 54.1 71.5 87.5 71.5 55.0 72.4

Table 5. Comparison with the existing methods in terms of the recognition accuracy on TextZoom [17]. Bold text and underlined text
indicate the best and the second-best performances, respectively.

certain trade-offs in the preservation of character structure
integrity. To qualitatively illustrate the superiority of our
method in restoring image style, we also provide visualiza-
tions from the five STR datasets in Figure 2 and Figure 3.
These results clearly show that our method produces out-
puts with sharper, more realistic edges, textures, and shad-
ows. Moreover, for texts with distinctive font styles, our
method achieves superior restoration of the font style.

3.3. Comparison with More Advanced Recognizers
In the Experiment section of the main text, we utilized three
classic text recognizers to evaluate the impact of STISR
methods on STR performance. Here, we extend this com-
parison by employing more advanced text recognizers, in-
cluding ABINet [3], MATRN [12], and PARSeq [1], to
further assess the performance of STISR methods. As
shown in Table 5, when ABINet and MATRN are used
as text recognizers, all STISRs exhibit significant perfor-
mance improvements over BICUBIC. Notably, our method
surpasses previous approaches in performance. However,
when PARSeq is employed, the results differ slightly, with
all STISR methods experiencing a certain degree of per-
formance decline. We attribute this to the fact that some
state-of-the-art text recognizers are capable of processing
low-resolution images, rendering the existing STISR frame-
works less effective with such advanced recognizers. Nev-
ertheless, as illustrated in Table 5, our method produces
fewer misleading results compared to previous methods.
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Figure 2. Visualized results on IC13[5] ,IC15[6] and CUTE80[14]
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Figure 3. Visualized results on SVTP[13] and IIIT5K[11]
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