A. Algorithmic Baselines
A.l. PPO

Proximal policy optimization (PPO) [54] is an on-policy algorithm that is designed to improve the stability and sample
efficiency of policy gradient methods, which uses a clipped surrogate objective function to avoid large policy updates.
The policy loss is defined as:

L, (0) = —E,; [min (p:(0)As, clip (p:(0),1 — €, 1+ ¢€) Ay)], 9)

where
o (at|st)

TO1a (at‘st) ’

pi(0) = (10)

and e is a clipping range coefficient.
Meanwhile, the value network is trained to minimize the error between the predicted return and a target of discounted
returns computed with generalized advantage estimation (GAE) [53]:

Ly (@) = Brr [ (Vi(s) = Vi*'5)?]. an

A.2. Random Search

Random search (RS) [11] is a simple yet effective method for hyperparameter optimization that randomly samples from the
configuration space instead of exhaustively searching through all combinations. Compared to grid search, RS is particularly
efficient in high-dimensional spaces, where it can outperform grid search by focusing on a wider area of the search space. It is
especially beneficial when only a few hyperparameters significantly influence the model’s performance, as it can effectively
explore these critical dimensions without the computational cost of grid search. RS is also highly parallelizable and flexible,
allowing for dynamic adjustments to the search process.

A.3. PBT

Population-based training (PBT) [33] is an asynchronous optimization method designed to optimize both model parame-
ters and hyperparameters simultaneously. Unlike traditional hyperparameter tuning methods that rely on fixed schedules for
hyperparameters, PBT adapts hyperparameters during training by exploiting the best-performing models and exploring new
hyperparameter configurations. PBT operates by maintaining a population of models and periodically evaluating their perfor-
mance, and using this information to guide the optimization of hyperparameters and model weights. This approach ensures
efficient use of computational resources while achieving faster convergence and improved final performance, particularly in
RL and generative modeling tasks.

A4.PB2

Population-based bandits (PB2) [27] enhances PBT by using a multi-armed bandit approach to dynamically select and op-
timize hyperparameters based on performance. This method improves the exploration-exploitation trade-off, allocating re-
sources to the most promising configurations and reducing computational costs while accelerating convergence.

A.5. SMAC+HB

SAMC [40] is a powerful framework for hyperparameter optimization that leverages Bayesian optimization (BO) to effi-
ciently find well-performing configurations. It uses a random forest model as a surrogate to predict the performance of
hyperparameter configurations, which is particularly effective for high-dimensional spaces. SMAC optimizes the hyperpa-
rameters of machine learning algorithms by iteratively selecting configurations based on a probabilistic model of the objective
function. Additionally, SMAC integrates with Hyperband [39] for more efficient resource allocation.

A.6. TMIHF

TMIHF [49] introduces a novel approach for optimizing both continuous and categorical hyperparameters in reinforcement
learning (RL). This method builds on the population-based bandits (PB2) [48] framework and addresses its limitation of only
handling continuous hyperparameters. By employing a time-varying multi-armed bandit algorithm, TMIHF efficiently selects
both continuous and categorical hyperparameters in a population-based training setup, thereby improving sample efficiency
and overall performance. The algorithm’s hierarchical structure allows it to model the dependency between categorical and
continuous hyperparameters, which is crucial for tasks like data augmentation in RL environments.



B. Experimental Setting

B.1. Arcade Learning Environment

Figure 11. Screenshots of the ALE-5 environments. From left to right: BattleZone, DoubleDunk, NameThisGame, Phoenix, and Q*Bert.

PPO+ULTHO. In this part, we utilize the implementation of [38] for the PPO algorithm, and train the agent for 10M
environment steps in each environment. For the hyperparameter clusters, we select the batch size, value loss coefficient, and
entropy loss coefficient as the candidates, and the detailed values of each cluster are listed in Table 2. Additionally, we run a
grid search over the exploration coefficient ¢ € {1.0,5.0} and the size of the sliding window used to compute the ()-values
W e {10, 50,100} to study the robustness of ULTHO. Finally, Table 3 illustrates the PPO hyperparameters, which remain
fixed throughout all the experiments except for the hyperparameter clusters.

PPO+Relay-ULTHO. At the end of the PPO+ULTHO experiments, we count the number of times each cluster is selected
and find out the cluster of interest and the neglected cluster of interest. Then we perform the experiments with the two clusters
separately before reporting the best-performing cluster. Therefore, the actual training budget of Relay-ULTHO is three times
that of ULTHO, i.e., 30M environment steps. Similarly, we run a grid search over the exploration coefficient and the sliding
window size and report the best results.

HPO Baselines. For RS, PBT, SMAF, and SMAF+HB, we utilize the implementations provided in ARLBench [8], which is
a benchmark for hyperparameter optimization in RL and allows comparisons of diverse approaches. The training budget for
each method is 320M environment steps with five runs, in which each configuration is evaluated on three random seeds. The
results reported in this paper are directly obtained from the provided dataset in the ARLBench.

B.2. Procgen

Figure 12. Screenshots of the sixteen Procgen environments.

PPO+ULTHO. In this part, we utilize the implementation of CleanRL for the PPO algorithm and train the agent for 25M
environment steps on 200 levels before testing it on the full distribution of levels. For the hyperparameter clusters, we select
the batch size, value loss coefficient, entropy loss coefficient, and number of update epochs as the candidates, and the detailed



values of each cluster are listed in Table 2. Similarly, we run a grid search over the exploration coefficient ¢ € {1.0,5.0} and
the size of the sliding window used to compute the Q-values W € {10, 50, 100} to study the robustness of ULTHO. Finally,
Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments except for the hyperparameter
clusters.

PPO+Relay-ULTHO. Similar to the ALE experiments, we identify the two clusters of interest at the end of the ULTHO
experiments. Then we also perform the experiments with the two clusters separately before reporting the best-performing
cluster. The actual training budget of Relay-ULTHO is 75M environment steps for Procgen. Finally, we run a grid search
over the exploration coefficient and the sliding window size and report the best results.

HPO Baselines. For PBT, PB2, and TMIHF, we leverage the official implementations reported in [49]. For each method,
the population size is set as 4, and each is trained for 25M environment steps. Therefore, the total training budget is 100M
environment steps. The results reported in this paper are directly obtained from the [49].

B.3. MiniGrid

Figure 13. Screenshots of the three MiniGrid environments. From left to right: DoorKey-6x6, LavaGapS7, and Empty-16x 16.

In this part, we use the implementation of [ 15] for the PPO agent and train each agent for 500K environment steps. For the
hyperparameter clusters, we select the learning rate, batch size, and value loss coefficient as the candidates, and the detailed
values of each cluster are listed in Table 2. The experiment workflow of ULTHO and Relay-ULTHO is the same as the
experiments above. Finally, Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments
except for the hyperparameter clusters.

B.4. PyBullet

AN S a1 2

Figure 14. Screenshots of the four PyBullet environments. From left to right: Ant, Hopper, HalfCheetah, and Walker2D.

.\

Finally, we perform the experiments on the PyBullet benchmark using the PPO implementation of [38], and train each
agent for 2M environment steps. Here, we leverage state-based observation rather than image-based observations. For the
hyperparameter clusters, we select the learning rate, batch size, and value loss coefficient as the candidates, and the detailed
values of each cluster are listed in Table 2. We also run experiments for both ULTHO and Relay-ULTHO algorithms and



report the best results. Likely, Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments
except for the hyperparameter clusters.

HP Cluster | ALE Procgen MiniGrid PyBullet
Learning Rate N/A {2.5¢-4, 5e-4, 1e-3}  {le-3,2.5e-3, 5e-3}  {2e-4, 5e-4, Te-4}
Batch Size {128, 256,512} {512, 1024, 2048} {128, 256, 512} {64, 128, 256}
Vale Loss Coefficient {0.25,0.5,1.0}  {0.25,0.5, 1.0} {0.25,0.5, 1.0} {0.25,0.5, 1.0}
Entropy Loss Coefficient | {0.01,0.05,0.1} N/A N/A N/A

Number of Update Epochs | N/A {3,2,1} N/A N/A

Table 2. The selected hyperparameter clusters for each benchmark.

Hyperparameter ALE Procgen MiniGrid PyBullet
Observation downsampling (84, 84) (64,64,3) (7,7,3) N/A
Observation normalization ~ /255. /255. No Yes
Reward normalization Yes Yes No Yes
LSTM No No No No
Stacked frames 4 No No N/A
Environment steps 10000000 25000000 500000 2000000
Episode steps 128 256 128 2048
Number of workers 1 1 1 1
Environments per worker 8 64 16 1
Optimizer Adam Adam Adam Adam
Learning rate 2.5e-4 Se-4 le-3 2e-4
GAE coefficient 0.95 0.95 0.95 0.95
Action entropy coefficient ~ 0.01 0.01 0.01 0

Value loss coefficient 0.5 0.5 0.5 0.5
Value clip range 0.2 0.2 0.2 N/A
Max gradient norm 0.5 0.5 0.5 0.5
Batch size 256 2048 256 64
Discount factor 0.99 0.999 0.99 0.99

Table 3. The PPO hyperparameters for the four benchmarks. These remain fixed for all experiments except for the selected clusters.



C. Learning Curves

EEm Baseline PPO

BigFish

125

Episode Return

@ PPO+ULTHO, c=1.0,W=10

BossFight

Emm PPO+ULTHO, c=1.0,W=50

CaveFlyer

s PPO+ULTHO, c=1.0, W=100

Chaser

0.0 0.5 1.0 15 2.0 25

Climber

Episode Return

0.0 0.5 1.0 15 2.0

CoinRun

25 0.0 0.5 1.0 15
Dodgeball

2.0 25

30

25

20

15

10

0.0 0.5 1.0 15 2.0 25
FruitBot

Episode Return
o

0.0 0.5 1.0 15 2.0

Jumper

25 0.0 0.5 1.0 15

Leaper

2.0 25

10

0.0 0.5 1.0 15 2.0 25
Miner

Episode Return

0.0 0.5 10 15 2.0

Plunder

2.0 25

50

0.0 0.5 1.0 15 2.0 25
StarPilot

0.0 0.5 1.0 15 2.0 25
Environment Steps (x107)

0.0 0.5 1.0 15 2.0
Environment Steps (x107)

25 0.0 0.5 1.0 15

2.0 25

Environment Steps (x107)

0.0 0.5 1.0 15 2.0 25
Environment Steps (x107)

Figure 15. Learning curves of the vanilla PPO agent and ULTHO with different sizes of the sliding window on the Procgen benchmark.
Here, the exploration coefficient c is set as 1.0. The mean and standard deviation are computed over five runs with different seeds.



10

Episode Return

Episode Return

Episode Return

0

Episode Return

Bl Baseline PPO

BigFish

B PPO+ULTHO, c=5.0,W=10

BossFight

B PPO+ULTHO, c=5.0, W=50

CaveFlyer

B PPO+ULTHO, c=5.0, W=100

Chaser

0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Climber CoinRun Dodgeball FruitBot
30
25
20
15
10
5
o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Heist Jumper Leaper Maze

0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Miner Ninja Plunder StarPilot
10
11
9
8
7
6
5
4
3
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Figure 16. Learning curves of the vanilla PPO agent and ULTHO with different sizes of the sliding window on the Procgen benchmark.
Here, the exploration coefficient c is set as 5.0. The mean and standard deviation are computed over five runs with different seeds.



I
o

Episode Return
5
°

<
in

o
o

~
n

o
°

Episode Return

Episode Return

Episode Return

o

I Baseline PPO

mm PPO+ULTHO, c=1.0,W=10

B PPO+ULTHO, c=5.0,W=10

BigFish BossFight CaveFlyer Chaser
10 o
8
8
8
7
6
6
6
4 5 4
2 4
2
3
0
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Climber CoinRun Dodgeball FruitBot
10 30
8
N 7 25
6 20
8
5
15
4
7
10
3
5
6 2
1 0
5
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Jumper Leaper Maze
10
8
9
9
7
8
6 8
7
5 7
6
4 6
K 3
5
4 2
0.0 0.5 1.0 15 2.0 25 0.0 05 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Miner Ninja Plunder StarPilot
50
14
9
40
8 12
7 10 30
6
8 20
5
6
4 10
4
3
0
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Figure 17. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 10. The mean and standard deviation are computed over five runs with different seeds.



I Baseline PPO W PPO+ULTHO, c=1.0, W =50 B PPO+ULTHO, ¢=5.0, W=50

BigFish BossFight CaveFlyer Chaser
9 9
20 8
7
g1 6
=]
2
1)
o 5
3
10
2 ¢
o
w
3
5
2
1
o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Climber CoinRun Dodgeball FruitBot
30
9
8
8 25
f=4
57 6 20
2
&
6
o 15
3
a5 4
a 10
w
4
5
2
3
o
2
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Heist Jumper Leaper Maze
9 8 10
8 7 9
c7
E 6 8
=1
&
6
() 5
o 7
o
2
a5
w 4 6
4
3
5
3
2
4 4
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Miner Ninja Plunder StarPilot
11
12 2
10 40
10 8 9
£
30
) ’ °
4
()
H ’ ’
@ 6 20
o
w 5 6
4 5
10
4
2 4
3
3 o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)

Figure 18. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 50. The mean and standard deviation are computed over five runs with different seeds.



B Baseline PPO

@ PPO+ULTHO, c=1.0, W =100

B PPO+ULTHO, c=5.0, W=100

BigFish BossFight CaveFlyer Chaser
20.0 9
10 7
17.5
6
15.0 8
£ 5
g 125
o 6
© 10.0 4
°
o
0o
Q75 4 3
w
5.0
2 2
25
1
0
0.0
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Climber CoinRun Dodgeball FruitBot
10
30
° 8
8 9 25
g7 6 20
2
U 8
x 6
% 15
5
2 ¢
o 7 10
wog
5
3 6 2
2 0
5
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Heist Jumper Leaper Maze
9
8
c7
=3
2
&
v 6
T
o
Rl
a5
w
4
3
0.0 0.5 1.0 15 2.0 25 0.0 05 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Miner Ninja Plunder StarPilot
14
10
12
12 9 40
10
10 8
£ 30
% 7
x 8 8
Q
6
3 20
&6
o 5
w 6
4
4 10
2 3 4
0
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Environment Steps (x107)

Figure 19. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 100. The mean and standard deviation are computed over five runs with different seeds.



Bl Baseline PPO

BossFight

BigFish

Episode Return

B PPO+ULTHO

s PPO+Relay-ULTHO

CaveFlyer

Chaser

1.0
CoinRun

1.0 0.0 15

Climber

0.0 15

1.0 2.0

Dodgeball

15

25

1.0 15 2.0 25

FruitBot

i<
£
E
2
Q
-4
Q
°
o
0
Q
fm
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Jumper Leaper Maze
f=3
£
=3
2
[7)
4
()
°
o
2
Q
w
0.0 0.5 1.0 15 2.0 25 0.0 05 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Plunder StarPilot
50
14
c
£
=1
]
Q
o«
Q
°
o
2
Q
w

0.5 1.0 15 2.0 0.5 1.0 15

2.0 25

Environment Steps (x107)

Environment Steps (x107)

0.5 1.0 15 2.0
Environment Steps (x107)

25

0.5 1.0 15 2.0 25

Environment Steps (x107)

Figure 20. Learning curves of the vanilla PPO agent and two ULTHO algorithms on the Procgen benchmark. The mean and standard
deviation are computed over five runs with different seeds.



D. Ablation Studies

ULTHO versus baselines (same training budgets). The Figure below compares ULTHO and the baselines on the ALE-
5 benchmark using the same training budget, 100M environment steps. By achieving highly frequent HP tuning within a
limited budget, ULTHO consistently outperforms the baselines.

ALE-5

(o)}
.

IS
L

N
.

Aggregated Score

o
L

PBTSMAC-MF RS SMAC ULTHO Relay

Figure 21. The aggregated performance comparison of ULTHO and baselines on the ALE-5 benchmark with the same training budgets.

ULTHO’s performance with varying sets of HPs. The Figure below compares the performance of ULTHO on the Procgen
benchmark with the varying number of HP clusters and intra-cluster HPs. There is a notable performance gain when using
more HP clusters. However, as a lightweight framework and constrained by the capability of MAB algorithms, continually
increasing the types and granularity of HPs only achieves limited performance gains.

g Procgen BigFish Ninja Plunder StarPilot

S s < 15

(/2] ] 8

g 10 & 6 10

© o

D) 5 'g 4 5

o )

o ‘s 2

D 0 w 0 0

< 2 3 4 6 2 3 4 2 3 4
Number of HP clusters Number of intra-cluster HPs

Figure 22. ULTHO’s performance comparison with the varying number of HP clusters and intra-cluster HPs.

ULTHO’s performance with off-policy RL algorithms. It is simple to apply ULTHO to off-policy RL algorithms. Take
SAC [26] for example, every T steps, we use ULTHO to select a HP before using it for model update in the next 7" steps. The
utility of each HP can be evaluated using the action value function: U; () = Z]Vil @ 2, a)~B; Q(s, a), where B is
a sampled batch. We perform an experiment using two tasks from the DMC benchmark [57], and the Figure above indicates
that ULTHO effectively enhances SAC’s performance. However, at the current stage, we do not recommend applying ULTHO
to off-policy algorithms as the return estimation based on sampling from a replay buffer is relatively unstable.

c Hopper Hop Quadruped Run
S
%300- 750] = SAC
(4 200 [— SAC+ULTHO
0 500 1
T
8 100 A 250 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (x10°) €6 Environment Steps (x10°) €6

Figure 23. The performance of SAC+ULTHO on the DMC benchmark.



E. Detailed Decision Processes

bigfish bossfight caveflyer chaser
30
60 30
25 40
50 25
X2 X 2 =\°
< =420 = 20 < 30
c c c c
o o o o
f=iad £ s £
<] S 30 S S 20
& 3 3 &
ol a 20 a 10 I
10
5 10 5
o 0 0 o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)
climber coinrun dodgeball fruitbot
60{ —*— LR 30
—o— VLC » 30
50 —*— BS
25
—e— NUE 25
Ra0 30 B 2 R
c c c c 20
2 8 2 2
£ 30 b= t1s £
9] 9 20 <] o115
Q Q Q Q
2 % o 2 o
a a a 10 a 10
10
10 5 5
0] @ 0 o o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)
heist jumper leaper maze
40
35
35 2 50
30
-0 —~20 —~ 40 —~
c c c c
S S 15 S 30 S 20
g2 £ £ £
o o o o
Q5 Q Q Q15
<] o 10 o 20 <)
o a [N a 10
10
5 10
5 5
o 0 o o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)
miner ninja plunder starpilot
60 60
—— LR 70 —— LR
—o— VLC 40 —o— VLC
501 —e— BS 60 501 —e— BS
—e— NUE —e— NUE
R a0 IS R 30 R
c f=4 i= [=4
S S0 S Sy
£ £ = £
o S 3 9] o
Q Q Q Q
2 20 <) 2 2 20
a a 20 a a
10
10 10 10
o] & 0 0 o] KL
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)

Figure 24. Detailed decision processes of PPO+ULTHO on the Procgen benchmark.



o

Upper Confidence Bound
B

~ © IS

Upper Confidence Bound

Upper Confidence Bound
5 @

~ w IS

Upper Confidence Bound

BigFish

E R

BossFight

B vie

I BS

B NUE

CaveFlyer

Chaser

0.0

05

10

15

Climber

20

05 1.0 15

CoinRun

0.0

05 1.0 15 20 25
Dodgeball

FruitBot

o
o
00 05 10 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25
Leaper Maze
35
5
3.0
4
25 b
R R R RN R RN R R RN R RN RN Y]
3 20
15
2
10
1
05
0 00
0.0 0.5 10 15 20 25 0.0 05 10 15 20 25
Plunder StarPilot
14
20
12
L R REE RN R R RN R R RN R R RN NN Y]
wo| Tl
15
08
06 10
04
05
0.2
of drrssszarrasaaaaaaaaaaaaiazai: 00

0.0

05

0.5 1.0 15

20
Environment Steps (x107)

25

05 10 15 20 25
Environment Steps (x107)

0.0 05 10 15 20 25
Environment Steps (x107)

Figure 25. The variation of confidence intervals of PPO+ULTHO on the Procgen benchmark. Here, the solid line represents the mean
value, and the dashed line represents the final upper confidence bound.



	Introduction
	Related Work
	HPO in Machine Learning
	HPO in Reinforcement Learning
	MAB Algorithms for Deep RL

	Background
	Reinforcement Learning
	HPO in RL

	The ULTHO Framework
	MABC for HPO
	Relay-ULTHO 

	Experiments
	Setup
	Benchmark Selection
	Algorithmic Baselines
	HP Clusters
	Evaluation Metrics

	Results Analysis
	Comparison with HPO Baselines
	Capability of Relay Optimization
	The Detailed Decision Process
	Ablation Studies
	Performance in Sparse-rewards Environments
	Performance on Continuous Control Tasks


	Discussion
	Algorithmic Baselines
	PPO
	Random Search
	PBT
	PB2
	SMAC+HB
	TMIHF

	Experimental Setting
	Arcade Learning Environment
	Procgen
	MiniGrid
	PyBullet

	Learning Curves
	Ablation Studies
	Detailed Decision Processes

