A. Algorithmic Baselines
A.l. PPO

Proximal policy optimization (PPO) [54] is an on-policy algorithm that is designed to improve the stability and sample
efficiency of policy gradient methods, which uses a clipped surrogate objective function to avoid large policy updates.
The policy loss is defined as:
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and e is a clipping range coefficient.
Meanwhile, the value network is trained to minimize the error between the predicted return and a target of discounted
returns computed with generalized advantage estimation (GAE) [53]:
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A.2. Random Search

Random search (RS) [11] is a simple yet effective method for hyperparameter optimization that randomly samples from the
configuration space instead of exhaustively searching through all combinations. Compared to grid search, RS is particularly
efficient in high-dimensional spaces, where it can outperform grid search by focusing on a wider area of the search space. It is
especially beneficial when only a few hyperparameters significantly influence the model’s performance, as it can effectively
explore these critical dimensions without the computational cost of grid search. RS is also highly parallelizable and flexible,
allowing for dynamic adjustments to the search process.

A.3. PBT

Population-based training (PBT) [33] is an asynchronous optimization method designed to optimize both model parame-
ters and hyperparameters simultaneously. Unlike traditional hyperparameter tuning methods that rely on fixed schedules for
hyperparameters, PBT adapts hyperparameters during training by exploiting the best-performing models and exploring new
hyperparameter configurations. PBT operates by maintaining a population of models and periodically evaluating their perfor-
mance, and using this information to guide the optimization of hyperparameters and model weights. This approach ensures
efficient use of computational resources while achieving faster convergence and improved final performance, particularly in
RL and generative modeling tasks.

A4.PB2

Population-based bandits (PB2) [27] enhances PBT by using a multi-armed bandit approach to dynamically select and op-
timize hyperparameters based on performance. This method improves the exploration-exploitation trade-off, allocating re-
sources to the most promising configurations and reducing computational costs while accelerating convergence.

A.5. SMAC+HB

SAMC [40] is a powerful framework for hyperparameter optimization that leverages Bayesian optimization (BO) to effi-
ciently find well-performing configurations. It uses a random forest model as a surrogate to predict the performance of
hyperparameter configurations, which is particularly effective for high-dimensional spaces. SMAC optimizes the hyperpa-
rameters of machine learning algorithms by iteratively selecting configurations based on a probabilistic model of the objective
function. Additionally, SMAC integrates with Hyperband [39] for more efficient resource allocation.

A.6. TMIHF

TMIHF [49] introduces a novel approach for optimizing both continuous and categorical hyperparameters in reinforcement
learning (RL). This method builds on the population-based bandits (PB2) [48] framework and addresses its limitation of only
handling continuous hyperparameters. By employing a time-varying multi-armed bandit algorithm, TMIHF efficiently selects
both continuous and categorical hyperparameters in a population-based training setup, thereby improving sample efficiency
and overall performance. The algorithm’s hierarchical structure allows it to model the dependency between categorical and
continuous hyperparameters, which is crucial for tasks like data augmentation in RL environments.



B. Experimental Setting

B.1. Arcade Learning Environment

Figure 11. Screenshots of the ALE-5 environments. From left to right: BattleZone, DoubleDunk, NameThisGame, Phoenix, and Q*Bert.

PPO+ULTHO. In this part, we utilize the implementation of [38] for the PPO algorithm, and train the agent for 10M
environment steps in each environment. For the hyperparameter clusters, we select the batch size, value loss coefficient, and
entropy loss coefficient as the candidates, and the detailed values of each cluster are listed in Table 2. Additionally, we run a
grid search over the exploration coefficient ¢ € {1.0,5.0} and the size of the sliding window used to compute the ()-values
W e {10, 50,100} to study the robustness of ULTHO. Finally, Table 3 illustrates the PPO hyperparameters, which remain
fixed throughout all the experiments except for the hyperparameter clusters.

PPO+Relay-ULTHO. At the end of the PPO+ULTHO experiments, we count the number of times each cluster is selected
and find out the cluster of interest and the neglected cluster of interest. Then we perform the experiments with the two clusters
separately before reporting the best-performing cluster. Therefore, the actual training budget of Relay-ULTHO is three times
that of ULTHO, i.e., 30M environment steps. Similarly, we run a grid search over the exploration coefficient and the sliding
window size and report the best results.

HPO Baselines. For RS, PBT, SMAF, and SMAF+HB, we utilize the implementations provided in ARLBench [8], which is
a benchmark for hyperparameter optimization in RL and allows comparisons of diverse approaches. The training budget for
each method is 320M environment steps with five runs, in which each configuration is evaluated on three random seeds. The
results reported in this paper are directly obtained from the provided dataset in the ARLBench.

B.2. Procgen

Figure 12. Screenshots of the sixteen Procgen environments.

PPO+ULTHO. In this part, we utilize the implementation of CleanRL for the PPO algorithm and train the agent for 25M
environment steps on 200 levels before testing it on the full distribution of levels. For the hyperparameter clusters, we select
the batch size, value loss coefficient, entropy loss coefficient, and number of update epochs as the candidates, and the detailed



values of each cluster are listed in Table 2. Similarly, we run a grid search over the exploration coefficient ¢ € {1.0,5.0} and
the size of the sliding window used to compute the Q-values W € {10, 50, 100} to study the robustness of ULTHO. Finally,
Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments except for the hyperparameter
clusters.

PPO+Relay-ULTHO. Similar to the ALE experiments, we identify the two clusters of interest at the end of the ULTHO
experiments. Then we also perform the experiments with the two clusters separately before reporting the best-performing
cluster. The actual training budget of Relay-ULTHO is 75M environment steps for Procgen. Finally, we run a grid search
over the exploration coefficient and the sliding window size and report the best results.

HPO Baselines. For PBT, PB2, and TMIHF, we leverage the official implementations reported in [49]. For each method,
the population size is set as 4, and each is trained for 25M environment steps. Therefore, the total training budget is 100M
environment steps. The results reported in this paper are directly obtained from the [49].

B.3. MiniGrid

Figure 13. Screenshots of the three MiniGrid environments. From left to right: DoorKey-6x6, LavaGapS7, and Empty-16x 16.

In this part, we use the implementation of [ 15] for the PPO agent and train each agent for 500K environment steps. For the
hyperparameter clusters, we select the learning rate, batch size, and value loss coefficient as the candidates, and the detailed
values of each cluster are listed in Table 2. The experiment workflow of ULTHO and Relay-ULTHO is the same as the
experiments above. Finally, Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments
except for the hyperparameter clusters.

B.4. PyBullet

AN S a1 2

Figure 14. Screenshots of the four PyBullet environments. From left to right: Ant, Hopper, HalfCheetah, and Walker2D.

.\

Finally, we perform the experiments on the PyBullet benchmark using the PPO implementation of [38], and train each
agent for 2M environment steps. Here, we leverage state-based observation rather than image-based observations. For the
hyperparameter clusters, we select the learning rate, batch size, and value loss coefficient as the candidates, and the detailed
values of each cluster are listed in Table 2. We also run experiments for both ULTHO and Relay-ULTHO algorithms and



report the best results. Likely, Table 3 illustrates the PPO hyperparameters, which remain fixed throughout all the experiments
except for the hyperparameter clusters.

HP Cluster | ALE Procgen MiniGrid PyBullet
Learning Rate N/A {2.5¢-4, 5e-4, 1e-3}  {le-3,2.5e-3, 5e-3}  {2e-4, 5e-4, Te-4}
Batch Size {128, 256,512} {512, 1024, 2048} {128, 256, 512} {64, 128, 256}
Vale Loss Coefficient {0.25,0.5,1.0}  {0.25,0.5, 1.0} {0.25,0.5, 1.0} {0.25,0.5, 1.0}
Entropy Loss Coefficient | {0.01,0.05,0.1} N/A N/A N/A

Number of Update Epochs | N/A {3,2,1} N/A N/A

Table 2. The selected hyperparameter clusters for each benchmark.

Hyperparameter ALE Procgen MiniGrid PyBullet
Observation downsampling (84, 84) (64,64,3) (7,7,3) N/A
Observation normalization ~ /255. /255. No Yes
Reward normalization Yes Yes No Yes
LSTM No No No No
Stacked frames 4 No No N/A
Environment steps 10000000 25000000 500000 2000000
Episode steps 128 256 128 2048
Number of workers 1 1 1 1
Environments per worker 8 64 16 1
Optimizer Adam Adam Adam Adam
Learning rate 2.5e-4 Se-4 le-3 2e-4
GAE coefficient 0.95 0.95 0.95 0.95
Action entropy coefficient ~ 0.01 0.01 0.01 0

Value loss coefficient 0.5 0.5 0.5 0.5
Value clip range 0.2 0.2 0.2 N/A
Max gradient norm 0.5 0.5 0.5 0.5
Batch size 256 2048 256 64
Discount factor 0.99 0.999 0.99 0.99

Table 3. The PPO hyperparameters for the four benchmarks. These remain fixed for all experiments except for the selected clusters.



C. Learning Curves
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Figure 15. Learning curves of the vanilla PPO agent and ULTHO with different sizes of the sliding window on the Procgen benchmark.
Here, the exploration coefficient c is set as 1.0. The mean and standard deviation are computed over five runs with different seeds.
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Figure 16. Learning curves of the vanilla PPO agent and ULTHO with different sizes of the sliding window on the Procgen benchmark.
Here, the exploration coefficient c is set as 5.0. The mean and standard deviation are computed over five runs with different seeds.
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Figure 17. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 10. The mean and standard deviation are computed over five runs with different seeds.



I Baseline PPO W PPO+ULTHO, c=1.0, W =50 B PPO+ULTHO, ¢=5.0, W=50

BigFish BossFight CaveFlyer Chaser
9 9
20 8
7
g1 6
=]
2
1)
o 5
3
10
2 ¢
o
w
3
5
2
1
o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Climber CoinRun Dodgeball FruitBot
30
9
8
8 25
f=4
57 6 20
2
&
6
o 15
3
a5 4
a 10
w
4
5
2
3
o
2
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Heist Jumper Leaper Maze
9 8 10
8 7 9
c7
E 6 8
=1
&
6
() 5
o 7
o
2
a5
w 4 6
4
3
5
3
2
4 4
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Miner Ninja Plunder StarPilot
11
12 2
10 40
10 8 9
£
30
) ’ °
4
()
H ’ ’
@ 6 20
o
w 5 6
4 5
10
4
2 4
3
3 o
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Environment Steps (x107) Environment Steps (x107) Environment Steps (x107) Environment Steps (x107)

Figure 18. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 50. The mean and standard deviation are computed over five runs with different seeds.
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Figure 19. Learning curves of the vanilla PPO agent and ULTHO with different exploration coefficients on the Procgen benchmark. Here,
the size W of the sliding window is set as 100. The mean and standard deviation are computed over five runs with different seeds.
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Figure 20. Learning curves of the vanilla PPO agent and two ULTHO algorithms on the Procgen benchmark. The mean and standard
deviation are computed over five runs with different seeds.



D. Ablation Studies

ULTHO versus baselines (same training budgets). The Figure below compares ULTHO and the baselines on the ALE-
5 benchmark using the same training budget, 100M environment steps. By achieving highly frequent HP tuning within a
limited budget, ULTHO consistently outperforms the baselines.
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Figure 21. The aggregated performance comparison of ULTHO and baselines on the ALE-5 benchmark with the same training budgets.

ULTHO’s performance with varying sets of HPs. The Figure below compares the performance of ULTHO on the Procgen
benchmark with the varying number of HP clusters and intra-cluster HPs. There is a notable performance gain when using
more HP clusters. However, as a lightweight framework and constrained by the capability of MAB algorithms, continually
increasing the types and granularity of HPs only achieves limited performance gains.
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Figure 22. ULTHO’s performance comparison with the varying number of HP clusters and intra-cluster HPs.

ULTHO’s performance with off-policy RL algorithms. It is simple to apply ULTHO to off-policy RL algorithms. Take
SAC [26] for example, every T steps, we use ULTHO to select a HP before using it for model update in the next 7" steps. The
utility of each HP can be evaluated using the action value function: U; () = Z]Vil @ 2, a)~B; Q(s, a), where B is
a sampled batch. We perform an experiment using two tasks from the DMC benchmark [57], and the Figure above indicates
that ULTHO effectively enhances SAC’s performance. However, at the current stage, we do not recommend applying ULTHO
to off-policy algorithms as the return estimation based on sampling from a replay buffer is relatively unstable.
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Figure 23. The performance of SAC+ULTHO on the DMC benchmark.



E. Detailed Decision Processes
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Figure 24. Detailed decision processes of PPO+ULTHO on the Procgen benchmark.
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Figure 25. The variation of confidence intervals of PPO+ULTHO on the Procgen benchmark. Here, the solid line represents the mean
value, and the dashed line represents the final upper confidence bound.
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