
A. Appendix
A.1. Extra Columns for Main Table 8.

avg. Text Doc ChartQA Info AI
method X% score VQA VQA overall human aug. VQA 2D

baseline 30 0.2751 36.9 16.5 16.9 17.8 16.1 24.7 63.6
60 0.3041 46.8 22.2 17.8 20.2 15.4 25.9 64.8

100 0.3105 47.8 22.6 18.8 21.1 16.5 25.6 64.9
grafting - 0.2821 46.2 21.1 16.1 19.1 13.1 20.7 61.2

ours 10 0.3512 51.5 29.5 23.9 25.8 22.0 28.9 64.2
20 0.3376 52.3 28.7 20.3 22.7 17.8 28.9 65.7
30 0.3468 53.1 29.1 21.6 23.7 19.6 29.4 66.3

Table A.1. Extra columns for Table 8 with additional benchmarks.

A.2. Comparing with LoRA
It is reasonable to ask whether applying LoRA [16] to full
decoder training could reduce training costs enough to elim-
inate the need for our surrogate training approach. We eval-
uate this by applying LoRA to the full Llama-70B decoder
training with the same setup as the experiments in Section
2.2. LoRA is applied to query and key layers in all trans-
former blocks, with rank 8 and alpha 32, following a com-
mon configuration [16] for tuning LLMs. Each training step
takes an average of 14.2 seconds, including data loading
and optimizer steps. Indeed, LoRA training is faster than
full parameter fine-tuning, as shown in Figure 2.

However, LoRA cannot reduce training costs as effectively
as our surrogate training approach because it does not im-
prove convergence speed. This happens for two reasons:
1) LoRA is designed for fine-tuning an already well-trained
model, where the target distribution is mostly aligned. For
example, fine-tuning a language model on a new text cor-

pus. In contrast, VLM training aims to transform a lan-
guage model from a text-only space to a vision-language
space. Since LoRA updates only a few parameters, it has
no sufficient capacity to adapt the language model to vision
features, leading to suboptimal performance.
2) LoRA reduces trainable model parameters, but not the
total training steps. Conversely, our surrogate training ap-
proach speeds up the decoder training convergence by the
surrogate-trained encoder, reducing overall training steps.
By addressing optimization efficiency rather than just pa-
rameter count, our method is fundamentally more effective.

A.3. Language Degradation in Decoders
A common issue in VLM training is that the language de-
coder underperforms on text benchmarks after training on
vision-language instructions. This degradation is due to the
model’s focus on vision-language tasks, which can lead to
a loss of language understanding. A typical solution is to
mix the text-only corpus with vision-language instructions
during training to mitigate this issue. In our surrogate train-
ing approach, we examine whether it can help mitigate this
degradation in this ablation.
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Llama-70B 82.6 86.9 83.4 71.2 85.4 83.7 89.1 47.6
ours 82.5 86.6 84.2 71.9 85.3 84.1 89.7 47.8 -

baseline 79.4 84.8 78.9 69.5 84.6 83.6 87.5 50.2 ↓
Table A.2. Accuracy(%) of 70B decoders from the final training
stage of our surrogate approach (ours) and baseline method on text
benchmarks.

In Table A.2, we compare the accuracy of the 70B decoders
from the final training stage of our surrogate approach and
the baseline method on text benchmarks. Our decoder re-
tains language performance, matching or even slightly sur-
passing the original Llama-70B. In contrast, the baseline
method suffers a significant drop in performance on most
benchmarks, including MMLU, HellaSwag, ARC, Wino-
grande, and BoolQ.

This is because our surrogate approach fine-tunes the full-
size decoder with a few steps on our surrogate-trained en-
coder, which is already aligned with the LLM’s embedding
space. This alignment prevents the decoder’s representation
from drifting too far, preserving its language understanding.

Figure A.1. The trajectory of prediction across different layers
of 1B, 4B, 12B, and 27B instruct models from Gemma-3. The
arrow marks the transition point where the trajectories of 300 ran-
dom samples converge.

A.4. Prediction Trajectory of Gemma-3 Family
In Figure A.1, we plot the prediction trajectory across dif-
ferent layers of Gemma-1B, 4B, 12B, and 27B instruct
models from Gemma-3 [43] using 300 random sequences.
Their early phases are instable and spiky, which may be



encoder ft. MMEbinary MME POPEbinary POPE SEED MM LLaVA MMB CV- GQA Vis- Text Doc Chart Info AI
on cog perc cog perc acc. f1 acc. f1 Bench -Vet -Wild en Bench Wiz VQA VQA QA VQA 2DT (22,35) 236 920 284 888 78.0 80.0 78.0 75.1 43.1 10.7 27.9 20.8 44.4 41.6 12.7 7.7 5.4 8.5 8.9 48.1

grafting 278 1026 272 938 81.1 81.6 78.1 80.9 50.1 20.6 44.4 49.4 54.0 32.9 44.3 11.5 7.6 10.1 16.3 56.5

Table A.3. Accuracy (%) of encoder trained on Qwen3-4B surrogate T (22,35) and zero-shot grafted to full-size Qwen3-4B on VLM
benchmarks. We report only all for SEED-Bench, avg for CV-Bench, and overall for ChartQA to save space.

Figure A.2. The trajectory of prediction across different layers
of 7B, 14B, 32B, and 72B instruct models from Qwen2.5. The
arrow marks the transition point where the trajectories of 300 ran-
dom samples converge.

due to the sliding window attention. But this instability
does not affect our method, as noted in Section 1.1, where
our intial proof-of-concept experiments were conducted on
Gemma-2-2B. Their trajectories still converge at a transi-
tion point, marking the shift between early and late phases
of the model. We highlight the transition point for each
model. As the figure shows, the early phase becomes in-
creasingly spiky as model size grows in the Gemma-3 fam-
ily, while the late phase remains smooth and stable.

A.5. Prediction Trajectory of Qwen Family
In Figure A.2 and Figure A.3, we plot the prediction tra-
jectory across different layers of Qwen2.5 [44] and Qwen3
[45] families. The difference is that the transition point oc-
curs slightly later in the model, especially for larger mod-
els, compared to Llama and Gemma families. This will
cause the surrogate model to be larger than the Llama
and Gemma one, for example, the Qwen2.5-72B surrogate
model will have 56B parameters. While this proposed sur-
rogate model is faster and more cost-effective than the full-
size 72B model, particularly for extended training, it still
remains large for a surrogate we ideally expect. This limi-
tation has been discussed in Section 4.

Figure A.3. The trajectory of prediction across different layers
of 4B, 8B, 14B, and 32B instruct models from Qwen3. The arrow
marks the transition point where the trajectories of 300 random
samples converge.

A.6. Ablation on Method Generalizability

To validate the generalizability of our method, we run an
ablation on the fresh new Qwen3-4B. According to the pre-
diction trajectory in Figure A.3, we build a 2.8B surro-
gate T (22,35) and train the last eight CLIP encoder lay-
ers with it under the same experimental settings. Table A.3
shows the encoder’s results on VLM benchmarks: the first
row is with the surrogate; the second row shows improve-
ments with zero-shot grafting to full-size Qwen3-4B (with-
out thinking mode), except for GQA. Most improvements
are significant. Thus, our method can generalize well to any
pretrained LLM.

A.7. Ablation on Teacher-Forced Feeding

In Section 1.1, the curves in Figure 3 are produced using
teacher-forced feeding to obtain the model’s predictions.
Specifically, we feed 300 randomly sampled pairs of ques-
tion and response into the model and examine the interme-
diate feature dynamics. A potential concern is that this
teacher-forced manner with real-world text samples may
not accurately represent the model’s natural feature dynam-
ics, as it assumes perfect reconstruction of the sequence.



To validate our findings, we prompt models with 300 ran-
dom questions and allow them to predict responses through
greedy sampling. Then we feed these predictions back into
the models and find that the resultant curves remain con-
sistent with those obtained from the forced-prediction ap-
proach in Figure 3.

A.8. Training Time for Llama-70B
The bottleneck in training Llama-70B is not only the GPU
card, but also the network bandwidth for communication.
In our experiments, we use 128 A100-80G GPUs with AWS
EFA network. We shard the 70B parameters across 16 GPU
ranks, and the replica group size is 8 using PyTorch FSDP
[53]. The batch size is also 128, which means each training
step requires communication among all GPUs for forward
and backward propagation, without gradient accumulation.
The NCCL communication is AWS EFA8. For reference of
training a full 70B model, the average forward time is 4.5
seconds, and the average backward time is 15.7 seconds.
Thus, the total average time of each training step is ∼20.5
seconds, including the data loading time and optimizer step.

A.9. Training Recipes
In the analysis experiments of Section 1, we train the en-
tire encoder with surrogate models for one epoch during the
second training stage. In contrast, the main experiments in
Section 2 follow a different setting: only the last eight lay-
ers of the encoder are trained for one epoch, using either
surrogate-37B or full-size Llama-70B, while the remaining
layers are frozen. This setting is also applied to the base-
line method. Aside from this difference, all other training
recipes remain the same. Next, we provide a detailed de-
scription of the training recipes.

We apply the chat template specific to each LLM, including
any special chat tokens, to the input conversations. For in-
stance, the dialog shown in Figure 6 starts as raw text; after
applying the chat template, it becomes:

In VLM training, cross-entropy loss for next-token predic-
tion is typically applied only to the green tokens in re-
sponses. The special token eot id marks the end of a con-
versation turn, while all other tokens are masked out. How-
ever, we found that during encoder-only training, the loss
should also be applied to the blue special tokens. Without
this adjustment, the encoder struggles to properly follow
question instructions and generate desired responses, both
in zero-shot grafting senarios and when paired with surro-
gate models. For Llama-70B, along with their surrogates,

8Introduction of Amazon Elastic Fabric Adapter (EFA).

we fully fine-tune all parameters during decoder training.
Hyper-parameters are in Table A.4.

A.10. Evaluation Benchmarks
We evaluate VLMs following LLaVA-1.5 [27] with ad-
ditional benchmarks, including MME [10], POPE [26],
LLaVA-in-the-Wild [29], SEED-Bench [21], MM-Vet [50],
MMBench [30], TextVQA [40], GQA [17], DocVQA [32],
ChartQA [31], InfoVQA [33], AI2D [19], Viz-Wiz [13] us-
ing lmms-eval toolkit [23]. We also evaluate models on
the vision-centric benchmark CV-Bench [46]. For language
models, we evaluate them on MMLU [15], HellaSwag [51],
ARC [8], PIQA [4], Winogrande [38], BoolQ [7], and
OpenBookQA [35] using lm-harness toolkit [11]. The
few-shot setting and the type of reported accuracy for text
benchmarks in lm-harness is shown in Table A.5.
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number of shots 5 10 0 25 5 0 0 0
acc. type - norm norm norm - norm - norm

Table A.5. Few-shot setting for text benchmarks in lm-harness.
For accuracy type, “norm” refers to length-normalized accuracy.

A.11. Surrogate Training for Smaller Models
For interested readers, we share our experience applying
our surrogate training approach to smaller language mod-
els, such as Llama-3B and 8B, compared with Llama-70B.
Before diving in, our key takeaway is: our surrogate train-

ing approach is most effective for giant LLMs. The larger
the LLM decoder and the training data scale in VLMs, the
greater the cost reduction our method achieves.

Applying this approach to relatively small LLMs is unnec-
essary, two reasons:
a) Their training costs are already affordable nowadays.
b) It introduces additional hyper-parameters with minimal
cost savings.

This section serves purely as a discussion, as our experi-
ments revealed some interesting yet unverified observations.
We share these findings to provide insight into potential lim-
itations and edge cases of our method, which may inform
future research.

When applying our surrogate training approach to Llama-
3B and 8B, we observe performance degradation in the third
training stage, particularly on benchmarks requiring a short
answer (e.g., “yes” or “no” in MME and POPE) or single
word/phrase (e.g., GQA and VizWiz). The initial thought
is that we may encounter the overfitting issue since we use
the same LLaVA-1.5-665K instructions for all the training
stages.

After further investigation, we find that the performance

https://aws.amazon.com/hpc/efa/


recipes stage-1 stage-2 stage-3
encoder CLIP-L/14-336px
decoder Llama-3.2-3B, 3.1-8B, 3.1-70B instruct version

adapter in encoder Linear↢ GELU↢ Linear
translator in decoder transformer layer
trainable parameters adapter + translator encoder + adapter encoder + adapter + decoder

learning rate 1e-4 5e-5 2e-5 for 70B, 5e-5 for others
batch size 256 128

instruction datasets GenQA[5]-500K LLaVA-1.5-665K
LLaVA-1.5-665K (ShareGPT-40K not included)

translator layer index 16 for Llama-3B, 17 for Llama-8B, and 40 for Llama-70B
image input size fixed size of 3362 pixels

image augmentation pad to input size with per-channel mean pixel value
number of A100-80G 16 (Llama-3B, -8B) and 128 (Llama-70B)

warmup ratio 3% of total batch iterations
lr scheduler cosine annealing with lr min = 0

optimizer AdamW(ω1 = 0.9,ω2 = 0.999, eps = 1e-8)
weight decay 0
gradient clip max norm = 1.0 with 2-norm

epochs 1
precision bfloat16

PyTorch FSDP enabled
gradient accumulation enabled

activation checkpointing enabled

Table A.4. Training hyper-parameters, recipes and settings.

Figure A.4. Dynamic loss weights for balancing
loss contributions from different response lengths
in a global batch. Multiple curves represent differ-
ent maximum response lengths in a batch, gradually
increasing from 30 to 300.

Disclaimer. The image-based training data was
used only to train vision encoders to produce im-
age features, not generative components.

Figure A.5. Training cost comparison among our surrogate train-
ing approach, baseline method, and training with distill models as
surrogates for Llama-3B and 8B.

degradation is not due to overfitting. Instead, our surrogate
is highly effective at training encoders with strong zero-shot
grafting capability in the second training stage. Then in the
third stage, the encoder triggers the target LLM to gener-
ate responses that already align with the training data distri-
bution, resulting in lower-than-expected loss values, espe-
cially for short answers or single words/phrases. This issue
arises from how loss is mean-reduced in a batch – by di-
viding the total loss by the number of tokens involved (e.g.,
green tokens in responses). As a result, the loss from short
answers is overwhelmed by that of longer answers, such as
open-ended responses with hundreds of tokens, leading to
insuffcient gradient updates for short answers.

To address this issue and verify our hypothesis, we ad-
just the loss calculation to consider the number of tokens
in responses. Specifically, we multiply the loss for each
response group by a dynamic loss weight to balance the

loss contributions from different response lengths within a
batch. Asume the length of the i-th response is Li and the
total number of responses in a global batch is N across all
ranks. The dynamic loss weight for the i-th response is cal-
culated as:

wi = ⌜maxj∈{1,...,N}Lj

log Li
⌜ord

,wi ← wi(⩀N
j=1wj)⌝(⩀N

j=1Lj) .
We then scale the loss for all tokens in the i-th response by
wi. Figure A.4 illustrates how this weighting adjusts based
on the maximum response length in a batch. In our exper-
iments, we set ord = 0.5. With this adjustment, we solve
the performance degradation issue and achieve comparable
performance to the baseline method, as shown in the left
subfigure of Figure A.5. We believe dynamic loss weight-
ing is not the only solution. The issue could be addressed by
using more diverse, larger-scale datasets in the second and
third stages, unlike the single small set of vision-language
instructions used in our experiments.

A.12. Distilled Model as Surrogate
In some LLM families, such as Llama [9] and Gemma
[42], they distill small models (Llama-1B) with large ones
(Llama-8B). We investigate whether these distilled models
can serve as surrogates for training encoders. The core issue
with using distilled models as surrogates is that they have
different embedding dimensions from the larger models. So
additional training stage is required to align the embedding
dimensions, e.g., with a linear layer. We conduct the exper-
iments on Llama-1B and 8B, treating Llama-1B as a surro-



input question response of model T (1,16) response of model T (16,24)
Which one is larger, the cat or the dog? The cat is larger than the dog. The dog is larger.

1 is larger than 10, is it correct? No, 10 is not larger than 1. The statement is not true. The number 1 is less than the number 10.
Happy birthday to you! Happy birthday to you! Thank you for the birthday greetings! I am happy to celebrate with you.

I love you. I’m glad to hear that. I’m here I am an AI language model and do not have personal feelings or
to help you with any questions emotions. However, I can provide you with information and assistance in
or tasks you may have. your own way.

1, 2, 3, 4. Count the next three numbers. 1, 2, 3, 4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
What is 100 + 13 = ? 100 + 13 = 113 100 + 13 = 125

Calculate 2 * 10.2 = ? 2 * 10.2 = 20.4 2 * 10.2 = 22.4
Calculate 1 + 10 = ? 1 + 10 = 11 1 + 10 = 20

Is 8.11 > 8.3? No, 8.11 is not greater than 8.3. Yes, 8.11 > 8.3.

Table A.6. Simple ability assessment for two small models of Gemma-2B. The model T (1,16) means the trained translator replaces the
early transition phase, while T (16,24) replaces the late phase. Response is sampled with greedy decoding.

gate model. The extra training stage is added between the
second and third stages, where we fix the surrogate-trained
encoder and other parameters, only training the linear layer
to align the embedding dimensions. In the right subfigure
of Figure A.5, we compare the performance of the distilled
model as a surrogate with our surrogate training approach
using the same training setup, including the ord = 0.5 dy-
namic loss weighting. The distilled model as a surrogate
performs worse than our surrogate training approach, indi-
cating that distilled models are not ideal surrogate choices
for our method.

A.13. Performance Drop on LLaVA-Wild
Our models and the baseline model both score lower on the
LLaVA-in-the-Wild [29] than the official scores reported in
LLaVA-1.5 [27], appearing in Tables 7 and 8, as well as
in the ablation studies in Section 1. This drop is expected
due to a change in the GPT-4 API model version in the jud-
ing process. LLaVA-1.5 uses GPT4-0314, which has been
deprecated. Instead, the evaluation toolkit lmms-eval uses
GPT4-0613, which systematically results in lower scores
across all models. For example, LLaVA-1.5-7B drops from
65.3 to 59.6, and LLaVA-1.5-70B from 72.8 to 66.1. For
more details, please refer to README.md9 in lmms-eval
repository.

A.14. Different Abilities in Two Transition Phases
In our initial experiments with Gemma-2-2B for Section 1,
we observe that different abilities emerge in the two transi-
tion phases of the model.

Gemma-2B has 26 layers and its transition point is at layer
16, as shown in Figure 3. We construct two small models
by replacing transition phases with a translator: T (1,16) to
replace the early phase, and T (16,24) to replace the late
phase. As in the ablation studies of Section 1, we train the
translator for one epoch in the first training stage. When we

9lmms-eval - Comprehensive evaluation results of LLaVA family
models.

prompt these two small models with the same question, we
find that T (16,24) and T (1,16) exhibit different abilities
in their responses.

In Table A.6, we show the responses of both models to a set
of questions. The first block includes simple questions that
test basic common sense reasoning, factual recall, and con-
versational coherence. Model T (16,24) performs well on
these questions, in which the early phase is preserved. It can
correctly answers that the dog is larger than the cat, provides
a coherent response to the birthday greeting, and appropri-
ately declines the love confession as an AI model. Addi-
tionally, it follows the instruction to count the next numbers
but misinterprets how many to include. In contrast, modelT (1,16) struggles with these questions, in which the late
phase is preserved. This suggests that:
a) Common sense reasoning, factual knowledge, and con-
versational abilities are primarily stored in the early-phase
parameters.
b) Despite training the translator in T (1,16), it may not
fully recover the model’s knowledge, possibly due to its
limited capacity with fewer parameters than the full model.

The second block of questions tests the model’s ability
to perform basic arithmetic calculations and comparisons.
Conversely, T (1,16) correctly handles even floating-point
multiplication, while T (16,24) fails entirely. This suggests
that arithmetic computation and numerical comparison are
primarily handled by the late-phase parameters.

A.15. Potential Use Cases
Our surrogate training approach may also benefit large en-
coder training, instead of the full-size decoder, in the third
stage. For example, InternViT [6] trains large encoders (6B)
with LLMs. Using a surrogate to align the encoder before-
hand could provide a warm start for continued training with
the frozen full-size LLM, reducing overall cost. This is fea-
sible since the loss function remains consistent (with a con-
trastive term), and the encoder is strongly aligned with the
full-size LLM via the surrogate like in our experiments.

https://docs.google.com/spreadsheets/d/1a5ImfdKATDI8T7Cwh6eH-bEsnQFzanFraFUgcS9KHWc/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1a5ImfdKATDI8T7Cwh6eH-bEsnQFzanFraFUgcS9KHWc/edit?gid=0#gid=0
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