
FedMeNF: Privacy-Preserving Federated Meta-Learning for Neural Fields

Supplementary Material

A. Notations

Notation Description
N Number of clients
M Number of participating clients in each com-

munication round
R Number of communication rounds
E Number of outer loop steps
K Number of inner loop steps
αm Weight proportional to the client m’s dataset

size (see Eq. (2))
λi Inner loop learning rate
λo Outer loop learning rate
T Data within a task, i.e., an image / a video /

images and camera poses of a 3D object.
S Support set of the task data
Q Query set of the task data
B Minibatch of the data (BK is sampled from the

query set Q, while the rest is sampled from the
support set S)

θ Global model (meta-learner) parameters
w Local model (meta-learner) parameters
φ Neural field parameters

Dtrain Client’s local training dataset
γ Regularization coefficient

Table 5. Notations.

B. Related Work
B.1. Federated Meta-Learning
Traditional federated learning algorithms assume that de-
centralized local datasets all belong to the same task and
aim to train a single global model. However, when data
is heterogeneous, or clients require different tasks, a single
global model often fails to perform well for all clients.

To address this challenge, federated meta-learning intro-
duces the meta-learning approach to achieve personaliza-
tion. Federated meta-learning combines federated learning
and meta-learning to train a global meta-learner using data
from multiple clients. For example, [8] proposed a method
that combines the traditional FedAvg [41] algorithm with
MAML [19] and Meta-SGD [39]. Similarly, [18] intro-
duced an approach that integrates FedAvg [41] with HF-
MAML [17].

In our work, we constructed baselines by combining not
only FedAvg [41] but also state-of-the-art federated learn-
ing algorithms such as FedProx [38], Scaffold [30], Fed-
Nova [61], FedExP [28], FedACG [32] with meta-learning

algorithms like MAML [19], FOMAML [19], Reptile [44],
and meta-NSGD [69]. We then evaluated the performance
of our FedMeNF against these baselines.

B.2. Meta-Learning for Neural Fields

Neural fields typically require training a separate neural
network for each task (signal) and demand large amounts
of data and computation. Additionally, the training pro-
cess often converges slowly, which is a significant limita-
tion [22, 58]. To address these challenges, recent research
has focused on learning a generalized neural field that can
handle multiple tasks efficiently.

For example, [58] used MAML [19] and Reptile [44]
to train a meta-initialized neural field network. Instead of
training neural fields for each task from scratch, they opti-
mize the neural fields for each task from a meta-initialized
neural field. This approach accelerates neural field opti-
mization and achieves high performance even in few-shot
scenarios. Inspired by this, we include MAML [19], FO-
MAML [19], and Reptile [44] as baselines and evaluate our
method against them. [14] extended the work of [58] by in-
troducing task-specific modulation vectors. During the in-
ner loop, only the modulation vector is updated, while in the
outer loop, the base network is updated separately from the
modulation vector. This method reduces memory require-
ments by storing a modulation vector for each task with
a single base network, rather than all neural field parame-
ters. While our work focuses on achieving fast optimization
and high performance with limited data, we did not include
modulation-based meta-learning methods as baselines be-
cause they do not align directly with our objectives.

Recent research has also explored hypernetwork-based
approaches for training generalized neural fields. [9, 31]
employed transformers as hypernetworks to predict neural
field parameters from task data, while [22] extended this ap-
proach using neural processes. These hypernetwork-based
methods have shown superior generalization compared to
gradient-based meta-learning approaches like [58]. How-
ever, they come with the drawback of requiring much larger
models. Such large models are impractical in a federated
learning setting where models are frequently communicated
between the server and clients at every communication
round. For this reason, we excluded hypernetwork-based
methods from our baselines. In future work, we plan to ex-
plore ways to adapt these high-performing hypernetwork-
based methods to federated learning environments, making
them more efficient and scalable.

B.3. Federated Learning for Neural Fields
Federated learning methods for neural fields, such as those
proposed in [24, 54, 55, 68], train a global neural field us-
ing local data from multiple clients without sharing the raw
data. These methods aim to train a global neural field for
a single scene collaboratively. This approach differs from
ours, which focuses on training a global meta-learner that
can quickly adapt to diverse tasks with minimal data.

In this scenario, all clients have a subset of the same task
data. For instance, if multiple clients have images of the
same car, these methods aim to train a global neural field
for that car using a federated learning approach. The trained
global neural field is shared with all clients, including the
server, and can be used to render images from new view-
points. However, if the server or other clients render images
using the same camera poses as those in a client’s private
dataset, they can reconstruct images that are very similar to
the client’s private images. This violates the core principle
of data privacy, which is central to federated learning.

We experimentally demonstrate this privacy leakage.
Using FedNeRF [24], we trained a global neural field for
the Lego scene [43] with varying numbers of total clients:
5, 10, and 50. Our experimental setup follows [24] with two
key differences: only five clients participated in training per
round, and we assume the server has no access to any data
and does not pre-train an initial NeRF. The dataset includes
100 training images with a resolution of 400 × 400 evenly
distributed among clients and 200 test images.

As shown in Tab. 6 and Figs. 8 and 9, the trained global
neural field can render images that are highly similar to the
private images held by clients. These results show that we
cannot train a global neural field for a single scene in a fed-
erated learning setup, which inherently carries a risk of pri-
vacy leakage. This approach should only be used with non-
private data, such as public scenes.

Dataset Lego [43]

of clients PSNRp(↓) PSNR(↑) SSIMp(↓) SSIM(↑) LPIPSp(↑) LPIPS(↓)

5 24.00 23.59 0.829 0.827 0.173 0.172
10 23.66 23.40 0.823 0.823 0.177 0.176
50 22.48 22.03 0.808 0.804 0.188 0.191

Table 6. Results of various reconstruction quality metrics (PSNR,
SSIM, LPIPS) and privacy metrics (PSNRp, SSIMp, LPIPSp) on
the Lego [43] dataset.

C. Privacy Attack Scenarios

C.1. Membership Inference Attack
The objective of the Membership Inference Attack
(MIA) [50] is for the server to determine whether a given
data sample was in the training set of a target client’s local

(a) Client’s training image (PSNRp) (b) Server-reconstructed image (23.46)

Figure 8. Qualitative results of reconstructing a client’s private
image on the server (# of clients = 5). A significant privacy leak
arises as the server can reconstruct images that are highly similar
to the client’s original images.

(a) GT image of novel view (PSNR) (b) Rendered image (23.53)

Figure 9. Qualitative results of novel view synthesis performed on
the client with the trained global neural field (# of clients = 5).

meta-learner. Therefore, a successful attack would allow
the server to identify the owner of a car in the data sample.
Setting. Our attacker model is implemented as a simple
convolutional network consisting of two convolution layers
and two fully connected layers. This model takes a pair
of images as input: a target image and a synthesized im-
age. The synthesized image is rendered by a specific local
meta-learner using the same view as the target image. The
attacker’s task is to infer whether the target image belongs
to the training set of the meta-learner used for synthesis.
The attacker model outputs a binary prediction indicating
whether the target image was included in the training set of
the local meta-learner used to generate the corresponding
synthesized image.
Dataset. To train and evaluate the attacker, we partition the
50 clients into a group of 40 shadow clients and a held-
out group of 10 target clients. To construct the dataset
for training and evaluating our attacker model, we partition
the 50 clients into 40 shadow clients and 10 target clients.
Each client holds a training set of four images of a unique
car, totaling 200 unique target images (50 clients × 4 im-
ages/client). The 160 images from the shadow clients are
used to generate the attacker’s training set, while the 40 im-
ages from the target clients form the test set. For each target
image, we generate a positive sample (membership label =

1) by pairing it with the image synthesized by its owner’s
local meta-learner. A negative sample (membership label =
0) is created by pairing the same target image with an im-
age synthesized by a randomly selected client’s local meta-
learner within the same partition. This process results in
a balanced dataset for the attacker model, comprising 320
training samples and 80 test samples.
Evaluation. We assess the attacker model’s accuracy in
correctly predicting the membership labels. Higher accu-
racy signifies a more effective attack and, consequently, a
more significant privacy vulnerability.

C.2. Property Inference Attack
The objective of the Property Inference Attack (PIA) [20]
is for the server to infer a global property of a local meta-
learner’s training set. Specifically, a successful attack al-
lows the server to determine the vehicle category (e.g.,
Sedan, SUV, or Coupe) of the car that each client owns.
Setting. The attacker model for the PIA is a classifier, im-
plemented with a simple convolutional network architecture
similar to that for MIA. It is trained to take a synthesized
image from an arbitrary client’s meta-learner as input and
predict the vehicle category of that client’s car.
Dataset. Similar to the MIA setup, we construct the PIA
dataset from the 200 unique target images provided by all
clients. For each target image, we use its owner client’s lo-
cal meta-learner to synthesize a new image from the same
viewpoint. The synthesized image is then labeled with the
vehicle category of the client’s car, constructing a single
data sample for the attacker model. As a result, we obtain a
total of 200 samples: 160 samples derived from the shadow
clients, which form the training set, and 40 samples from
the target clients, which form the test set. The distributions
of the training and test sets are shown in Fig. 10.
Evaluation. We evaluate the attacker model’s classification
accuracy on the vehicle categories of the target clients’ cars.
High accuracy implies that the local meta-learner leaks in-
formation about the private properties (i.e., vehicle cate-
gory) of a client’s training data.

D. Implementation Details
Models. To maintain consistency with previous research [9,
14, 56, 58], we employ the widely adopted SIREN [51] ar-
chitecture for image and video reconstruction and the sim-
plified NeRF model [43] for novel view synthesis. The
SIREN model consists of 6 layers with a hidden dimension
of 128. The NeRF model consists of 6 layers with a hidden
dimension of 256. We apply gradient clipping to the gra-
dients (max norm value = 5). All experiments are run on a
cluster of 64 NVIDIA TITAN RTX GPUs. Our code will
be publicly available upon publication.
Hyperparameters. Table 7 summarizes the hyperparame-
ters used in our experiments.

Suv

Sed
an

Cou
pe Jee

p
Lim

o

Hot
ro

d

Roa
ds

ter

Con
ve

rti
ble

Rac
e c

ar

Hatc
h-b

ac
k

Oth
er

Vehicle Categories

0

10

20

30

40

N
um

be
r

of
 S

am
pl

es

Training set
Test set

Figure 10. Distribution of the training and test sets for the Privacy
Inversion Attack.

E. Datasets

We conduct experiments across the datasets of various
modalities, including images, videos, and NeRF. To eval-
uate performance with limited local training data per client,
we select scenarios in which each client has only one or
very few tasks. For images, we use the cat category from
the PetFace dataset [49], assuming each client has an aver-
age of 3.12 images of a unique cat instance. For videos, we
use the GolfDB dataset [42], where each client has an aver-
age of 1.56 videos of only one person’s golf swings. Since
a task is defined as reconstructing a single image or video,
each image or video corresponds to one task. Note that a
client has images or videos of an individual, and the num-
ber of images or videos determines the number of tasks.

However, the definition of a task is slightly different for
NeRF scenes. A task is defined as synthesizing a novel view
of a 3D object, where the input views for test-time opti-
mization (support set) and the new views for testing (query
set) constitute one task. We use the Cars category from the
ShapeNet dataset [6]. The training set for each client con-
tains on average four input views of a single car with an
equivalent amount allocated for testing. We also test the
FaceScape dataset [65, 70] for human faces. Each client
has an average of 10 training input views for a single facial
expression and the same number of views for testing. Each
client has one task (one 3D object) for NeRF scenes, and
the number of input views follows a Dirichlet distribution.

E.1. Petface

We use the PetFace [49] dataset that contains animal face
images of 257484 unique individuals across 13 animal fam-
ilies and 319 breed categories. In this work, we focus ex-
clusively on the cat category within the dataset. We assume
each client represents an individual pet owner and possesses

images of a unique pet. The total number of training images
across all clients is 156, and the total number of test images
is 51. On average, each client has 3.12 training images and
1.02 test images. All images have a resolution of 224 × 224.
The number of images available for each pet (client) varies,
as shown in Fig. 11. The client’s local training dataset is
used in a federated meta-learning framework to collabora-
tively train a global meta-learner. Once the global meta-
learner is trained, each client can use it to rapidly optimize
the neural fields of new images, whether of their own pet,
another client’s pet, or out-of-distribution (OOD) pets.

0 10 20 30 40 50
Client Id

0

1

2

3

4

5

6

7

N
um

be
r

of
 Im

ag
es

Train
Test

Figure 11. Distribution of the number of images for each client in
the PetFace [49] dataset.

E.2. GolfDB
GolfDB [42] is a video dataset that includes 1400 golf
swing videos of professional golfers. Each video is catego-
rized into one of three view types: face-on, down-the-line,
or other. We use only the down-the-line videos with a res-
olution of 160 x 160 at 30 fps. We assume that each client
represents an individual golfer and possesses only their own
golf swing videos. Across all clients, the total number of
training videos is 78, and the total number of test videos is
52. On average, each client has 1.56 training videos and
1.04 test videos. The number of videos available for each
client is shown in Fig. 12. Each client can use the trained
global meta-learner to rapidly optimize the neural field for
a new golf swing video, regardless of who performed the
swing.

E.3. ShapeNet
We conducted experiments on ShapeNet [6], which
is broadly used for Neural Radiance Fields (NeRF).
NeRF [43] is a method for rendering novel views of a 3D
scene by predicting the color and density at the arbitrary 3D
location and 2-dimensional viewing directions through vol-
ume rendering. This approach enables the synthesis of im-
ages from new viewpoints, a task referred to as novel view

0 10 20 30 40 50
Client Id

0

1

2

3

4

5

6

N
um

be
r

of
 V

id
eo

s

Train
Test

Figure 12. Distribution of the number of videos for each client in
the GolfDB [42] dataset.

synthesis. In our experiments, we focused on private and
personal objects that people typically possess in limited va-
rieties, such as cars. From ShapeNet, we randomly selected
a subset of 100 car objects, each represented by 50 images
of 128×128 resolution along with their corresponding cam-
era poses. The 100 car objects are allocated to 50 clients,
with each client assigned a total of 2 car objects; one for the
local training dataset to train a global meta-learner, and one
for the local test dataset to evaluate novel view synthesis
performance.

To mimic real-world scenarios where the number of
available views per object is limited and varies, we re-
stricted the input views for each car object using a Dirichlet
distribution. Each car’s data is divided into two parts. The
support set is used for inner-loop optimization during train-
ing and test-time optimization during testing. The query
set is used for outer-loop optimization during training and
to evaluate the performance of novel view synthesis dur-
ing testing. On average, each car object has four support
images and 4 query images. Across all 100 car objects, this
results in 400 support images distributed among clients. Us-
ing the Dirichlet distribution [7, 64], we redistributed the
number of support images to simulate varying levels of het-
erogeneity, ensuring the size of the query set is proportional
to the support set. To evaluate the generalization ability of
our FedMeNF in non-identically distributed (non-IID) set-
tings, we conduct experiments with different Dirichlet pa-
rameters (α = 10, 5.0, 1.0). As α decreases, the distribu-
tion of support and query set sizes among clients becomes
more heterogeneous, as illustrated in Fig. 13. Additionally,
we test scenarios where the average number of support and
query images per car is not fixed at 4. For example, we ex-
perimented with average sizes of 2 views and 8 views per
car to examine FedMeNF’s performance in different sce-
narios. The distributions of support and query set sizes
for these settings are shown in Fig. 14. This comprehen-

sive experimental setup allows us to evaluate FedMeNF’s
performance and robustness across a wide range of realis-
tic, heterogeneous, and resource-constrained scenarios. The
trained global meta-learner enables the rapid optimization
of a neural field for any new car object even with a few im-
ages, allowing for the synthesis of high-quality novel views
of that car.

0 20 40 60 80 100
Client Id

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(a) α = 10

0 20 40 60 80 100
Client Id

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(b) α = 5.0

0 20 40 60 80 100
Client Id

0

3

6

9

12

15

18

21

24

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(c) α = 1.0

Figure 13. Distribution of the number of views for each car in the
Cars [6] dataset under various Dirichlet parameters.

0 20 40 60 80 100
Client Id

0

1

2

3

4

5

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(a) Avg. number of views = 2

0 20 40 60 80 100
Client Id

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(b) Avg. number of views = 4

0 20 40 60 80 100
Client Id

0

2

4

6

8

10

12

14

16

18

N
um

be
r

of
 V

ie
w

s

Support set
Query set

(c) Avg. number of views = 8

Figure 14. Distribution of the number of views for each car in the
Cars [6] dataset under various avg. number of views (α = 5.0).

E.4. FaceScape

We extended our evaluation to human faces, a criti-
cal area for privacy-preserving applications, using the
FaceScape [65, 70] dataset, a more private and unique
data type. This experiment aims to test the ability of our
global meta-learner to handle diverse and privacy-sensitive
datasets. The FaceScape dataset contains 3D facial data
from 847 subjects, each with 20 expressions. These expres-
sions include emotional states, such as neutral, smile, and

anger, and dynamic facial movements, such as blinking or
raising eyebrows. There are 120 images for each expression
with a resolution of 512 x 512 and corresponding camera
poses.

In our work, we randomly select 50 subjects from the
dataset and treat each subject as a separate client. Each
client is assigned data for two expressions, averaging 20
images per expression at a downsampled resolution of 128
x 128. Data for one expression is used for training, while
the other, considered an unseen expression, is employed for
testing.

For each expression, we assume an average of 10 support
images used for inner-loop optimization during training or
test-time optimization during testing. The number of sup-
port images for each expression, a total of 100 (clients) ×
10 (images/client) = 1000 images across all expressions, is
reallocated using a Dirichlet distribution [7, 64]. Similarly,
we assign an average of 10 query images per expression for
outer-loop optimization during training or novel view syn-
thesis evaluation during testing, maintaining the same ratio
as the number of support images. The support and query
images distribution across expressions is shown in Fig. 15.

Using the trained global meta-learner, each client can
quickly optimize a neural field for a new expression or even
an entirely new person with only a few input images. This
allows for synthesizing novel views of the face with the de-
sired expression. This capability has broad applications: in
AR/VR, it can enable the creation of realistic avatars that
dynamically mimic user expressions. In 3D animation, it
simplifies the production of dynamic facial models. Per-
sonal digital assistants can also use this approach to deliver
more engaging and personalized facial interactions.

0 20 40 60 80 100
Client Id

0

4

8

12

16

20

24

28

N
um

be
r

of
 V

ie
w

s

Support set
Query set

Figure 15. Distribution of the number of views for each expression
in the FaceScape [7, 64] dataset (α = 5.0).

F. Additional Metrics
We used not only PSNR but also SSIM and LPIPS as met-
rics to evaluate the performance of reconstruction or novel

view synthesis for the trained neural field. Similarly, we
extended the privacy metric, PSNRp, defined in Sec. 4, to
SSIMp and LPIPSp. These metrics assess how much in-
formation about the client’s private dataset is included in
the global meta-learner. The privacy metric measures the
similarity between data inferred by the meta-learner and the
client’s local data. The closer the similarity, the greater the
privacy leakage, as it indicates the meta-learner has retained
more specific information about the client’s private data.
Expanded results corresponding to Tab. 1 are presented in
Tabs. 8 to 11.

G. Convergence
Figure 16 shows the convergence behavior of MAML [19]
and our FedMeNF (γ = 0.75) with FedAvg [41] on the
Cars [6] dataset. The inner loss represents the MSE loss
during the inner loop, as defined in Eq. (8), while the outer
loss corresponds to the MSE loss during the outer loop, as
described in Eq. (9), for each round.

For the inner loss, MAML converges to a lower value
compared to FedMeNF. This happens because the global
meta-learner in MAML, used as the initialization for neural
field parameters, is closer to the client’s data.

On the other hand, the outer loss of FedMeNF is gener-
ally lower than that of MAML. This is because, according
to Eqs. (9) and (10), FedMeNF’s loss is calculated as

L(φK , BK)− γL(wi, BK),

which subtracts the global meta-learner’s loss on the client’s
query set L(wi, BK) from MAML’s loss L(φK , BK).
However, the outer loss of FedMeNF converges to a sim-
ilar level to that of MAML.

One might incorrectly interpret this convergence as in-
dicating that L(wi, BK) approaches zero. However, this is
not the case. The privacy metric PSNRp for FedMeNF con-
verges to a non-zero value, meaning that L(wi, BK) also
converges to a non-zero value. Instead, the lower outer
loss in FedMeNF implies that L(φK , BK) is smaller in
FedMeNF compared to MAML. This result demonstrates
that FedMeNF achieves a lower loss than MAML while
preserving client data privacy. This also explains why
FedMeNF’s novel view synthesis metrics, such as PSNR,
SSIM, and LPIPS, not only outperform MAML but also
converge faster.

H. Proof of Proposition 1
Consider the local meta-optimization gradient in Eq. (9)
where γ = 0:

gM = ∇wi
L(φK , BK). (15)

Hyperparameter PetFace [49] GolfDB [42] Cars [6] FaceScape [65, 70]
Number of communication rounds (R) 1000
Number of clients (N) 50
Number of participating clients in each communication round (M) 5
FedProx [38] µ 0.1 0.1 0.1 (Reptile: 0.0001)
FedExP [28] ϵ 0.001
FedACG [32] λ 0.2
FedACG [32] β 0.1 0.1 0.1 (Reptile: 0.0001)
meta-NSGD [69] ϵ 10.0
meta-NSGD [69] λ 0.1
Number of outer steps (E) 32 64 8 40
Number of inner steps (K) 1 1 8 8
Outer learning rate (λo) 0.01 (FOMAML: 0.05) 0.05 0.05 (Reptile:10)
Inner learning rate (λi) 0.005 0.01 0.001 0.0001
Optimizer SGD SGD AdamW AdamW
Test-time optimization (TTO) steps 64 8192 8192 32768
Batch size 1024 2048 128 rays × 128 points

Table 7. Hyperparameters.

Then, the first-order approximation of the meta-gradient gM
is

gM ≈ gK − λiIK , where IK =

K−1∑
j=0

∇φ0 ⟨gK , gj⟩ .

(16)

Proof. We use the following definitions:

gi = ∇φ0
L(φ0, Bi) (17)

gK = ∇φ0
L(φ0, BK) (18)

Hi = ∇2
φ0
L(φ0, Bi) (19)

ĝi = ∇φi
L(φi, Bi) (20)

ĝK = ∇φK
L(φK , BK) (21)

Ĥi = ∇2
φi
L(φi, Bi) (22)

According to Eq. (8),

φj+1 = φj − λi∇φjL(φj , Bj). (23)

Then, we have

φj = φ0 − λi

j−1∑
l=0

∇φl
L(φl, Bl), (24)

φj − φ0 = −λi

j−1∑
l=0

∇φl
L(φl, Bl) (25)

= −λi

j−1∑
l=0

ĝl. (26)

We assume L(φj , Bj) is differentiable three times at φ0

to apply Taylor theorem. By Taylor’s theorem, we have

ĝj =∇φjL(φj , Bj) (27)
=∇φ0L(φ0, Bj)

+∇2
φ0
L(φ0, Bj) · (φj − φ0)

+
1

2!
∇3

φ0
L(φ0, Bj) · (φj − φ0)

2

+ · · · . (28)

Combining Eq. (28) and Eq. (26),

ĝj =∇φ0
L(φ0, Bj)

+∇2
φ0
L(φ0, Bj) · (φj − φ0)

+O(λ2
i) (29)

=gj − λiHj

j−1∑
l=0

ĝl +O(λ2
i). (30)

We assume a learning rate λi is small enough for first-
order approximation. Then, the first-order approximation
of the ĝj is

ĝj ≈ gj − λiHj

j−1∑
l=0

ĝl. (31)

Note that

ĝj ≈ gj +O(λi). (32)

Similarly, we can have

Ĥj ≈ Hj +O(λi). (33)

Combining Eq. (31) and Eq. (32), we have

ĝj ≈gj − λiHj

j−1∑
l=0

gl +O(λ2
i) (34)

≈gj − λiHj

j−1∑
l=0

gl. (35)

Now, let’s calculate the meta-gradient gM as follows.

gM =∇wi
L(φK , BK) (36)

=∇φ0L(φK , BK) (φ0 = wi, ref. Algorithm 1)
(37)

=

K−1∏
i=0

∇φiφi+1 · ∇φK
L(φK , BK) (38)

=

K−1∏
i=0

∇φi(φi − λi∇φiL(φi, Bi)) · ∇φK
L(φK , BK)

(39)

=

K−1∏
i=0

(I − λi∇2
φi
L(φi, Bi)) · ∇φK

L(φK , BK)

(40)

=

K−1∏
i=0

(I − λiĤi) · ĝK (41)

=(I − λi

K−1∑
i=0

Ĥi) · ĝK +O(λ2
i) (42)

=(I − λi

K−1∑
i=0

Hi) · ĝK +O(λ2
i) (using Eq. (33))

(43)

=(I − λi

K−1∑
i=0

Hi) · (gK − λiHK

K−1∑
i=0

gi)

+O(λ2
i) (using Eq. (35)) (44)

=gK − λi

K−1∑
i=0

(HKgi + gKHi) +O(λ2
i) (45)

=gK − λi

K−1∑
i=0

∇φ0
⟨gK , gi⟩+O(λ2

i) (46)

Therefore, the first-order approximation of the gM is

gM ≈gK − λi

K−1∑
i=0

∇φ0
⟨gK , gi⟩ , (47)

=gK − λiIK . (48)

I. Proof of Proposition 2
Let ∆Li+1 = L(wi+1, BK) − L(wi, BK). Then, the first-
order approximation of ∆Li+1 is

∆Li+1 ≈ −λo(∇wi
L(wi, BK))2 = −λo · gK2 ≤ 0.

(49)

Proof. According to Eq. (9) where γ = 0,

wi+1 = wi − λo∇wiL(φK , BK), (50)
wi+1 − wi = −λo∇wiL(φK , BK). (51)

By Taylor’s theorem, we have

L(wi+1, BK) =L(wi, BK)

+ L′(wi, BK) · (wi+1 − wi)

+
1

2!
L

′′
(wi, BK) · (wi+1 − wi)

2

+ · · · . (52)
=L(wi, BK)

+ L′(wi, BK) · (−λo∇wiL(φK , BK))

+O(λ2
o) (using Eq. (51). (53)

Since φ0 = wi according to Algorithm 1,

L′(wi, BK) = L′(φ0, BK). (54)

Then, using Eq. (18),

L′(wi, BK) = gK . (55)

Combining Eq. (53), Eq. (55), and Proposition 1

∆Li+1 =L(wi+1, BK)− L(wi, BK) (56)

=gK · (−λo∇wi
L(φK , BK)) +O(λ2

o) (57)

≈− λo · gK · (gK − λiIK) +O(λ2
o) (58)

=− λo · gK2 +O(λiλo) +O(λ2
o). (59)

Therefore, the first-order approximation of the ∆Li+1 is

∆Li+1 ≈− λo · gK2 ≤ 0. (60)

J. Proof of Proposition 3
Consider the gradient of privacy-preserving loss Lpp:

gpp = ∇wi
Lpp(γ,wi, φK , BK) (61)

= ∇wi
(L(φK , BK)− γL(wi, BK)). (62)

Then, the first-order approximation of gpp and ∆Li+1 are

gpp ≈ (1− γ) · gK − λiIK , (63)

∆Li+1 ≈ −λo(1− γ)(gK)2 ≤ 0. (64)

Proof. Using Proposition 1 and Eq. (18), we have

gpp =∇wi
(L(φK , BK)− γL(wi, BK)) (65)

≈gM − γgK (66)
=(1− γ) · gK − λiIK . (67)

According to Eq. (9) and using Eq. (67),

wi+1 = wi − λo∇wi
(L(φK , BK)− γL(wi, BK)), (68)

wi+1 − wi =− λo∇wi(L(φK , BK)− γL(wi, BK))
(69)

≈− λo((1− γ) · gK − λiIK). (70)

Combining Eq. (52) and Eq. (70), we have

L(wi+1, BK) =L(wi, BK)

+ L′(wi, BK) · (wi+1 − wi)

+O(λ2
o) (71)

≈L(wi, BK)

+ L′(wi, BK) · (−λo((1− γ) · gK − λiIK))

+O(λ2
o). (72)

Combining Eq. (72), Eq. (55), and Proposition 1

∆Li+1 =L(wi+1, BK)− L(wi, BK) (73)

≈gK · (−λo((1− γ) · gK − λiIK)) +O(λ2
o)

(74)

=− λo(1− γ) · gK2 +O(λiλo) +O(λ2
o). (75)

Therefore, the first-order approximation of the ∆Li+1 is

∆Li+1 ≈− λo(1− γ)gK
2 ≤ 0. (76)

0 200 400 600 800 1000

Communication rounds

0.05

0.10

0.15

0.20

In
ne

r
Lo

ss
 (M

SE
) FedMeNF

MAML

(a) Inner loss

0 200 400 600 800 1000

Communication rounds

0.05

0.10

0.15

O
ut

er
 L

os
s

(M
SE

) FedMeNF
MAML

(b) Outer loss

0 200 400 600 800 1000

Communication rounds

8

10

12

14

16

18

20

PS
N

R
p

FedMeNF
MAML

(c) PSNRp

0 200 400 600 800 1000

Communication rounds

0.675

0.700

0.725

0.750

0.775

0.800

0.825

SS
IM

p

FedMeNF
MAML

(d) SSIMp

0 200 400 600 800 1000

Communication rounds

0.4

0.5

0.6

0.7

0.8

LP
IP

S p

FedMeNF
MAML

(e) LPIPSp

0 2000 4000 6000 8000

Test-time optimization steps

12

14

16

18

20

22

24

PS
N

R

FedMeNF
MAML

(f) PSNR

0 2000 4000 6000 8000

Test-time optimization steps

0.65

0.70

0.75

0.80

0.85

0.90

SS
IM

FedMeNF
MAML

(g) SSIM

0 2000 4000 6000 8000

Test-time optimization steps

0.1

0.2

0.3

0.4

0.5

LP
IP

S

FedMeNF
MAML

(h) LPIPS

Figure 16. Convergence of MAML [19] and our FedMeNF (γ = 0.75) with FedAvg [41] on the Cars dataset [6].

Modality Image
Dataset PetFace [49]

Method \ Metric PSNRp(↓) PSNR(↑) SSIMp(↓) SSIM(↑) LPIPSp(↑) LPIPS(↓)

Local - 22.29 - 0.572 - 0.716

FedAvg [41] + MAML 16.57 27.39 0.544 0.734 0.534 0.419
+ FOMAML 18.52 23.15 0.573 0.618 0.421 0.415
+ Reptile 17.39 22.52 0.505 0.585 0.731 0.614
+ meta-NSGD 12.49 5.15 0.395 0.003 0.923 1.566
+ Ours 14.77 27 0.526 0.723 0.606 0.441

FedProx [38] + MAML 16.58 27.49 0.545 0.737 0.532 0.415
+ FOMAML 18.53 24.32 0.578 0.647 0.423 0.4
+ Reptile 17.37 22.5 0.503 0.582 0.733 0.619
+ meta-NSGD 12.49 5.15 0.395 0.003 0.923 1.57
+ Ours 14.44 27.08 0.517 0.727 0.613 0.438

Scaffold [30] + MAML 16.71 27.66 0.547 0.743 0.53 0.408
+ FOMAML 18.56 23.98 0.578 0.641 0.421 0.401
+ Reptile 17.37 22.47 0.503 0.582 0.736 0.619
+ meta-NSGD 12.49 5.13 0.395 0.003 0.923 1.571
+ Ours 14.93 27.19 0.512 0.729 0.592 0.434

FedNova [61] + MAML 16.52 27.51 0.54 0.737 0.548 0.414
+ FOMAML 18.5 24.1 0.571 0.635 0.432 0.434
+ Reptile 17.38 22.52 0.505 0.585 0.731 0.615
+ meta-NSGD 12.49 5.14 0.395 0.003 0.923 1.57
+ Ours 14.94 27.15 0.526 0.728 0.582 0.433

FedExP [28] + MAML 16.57 27.39 0.544 0.734 0.534 0.419
+ FOMAML 18.52 23.15 0.573 0.618 0.421 0.415
+ Reptile 17.39 22.64 0.505 0.586 0.731 0.614
+ meta-NSGD 12.49 5.15 0.395 0.003 0.923 1.566
+ Ours 14.65 26.86 0.504 0.72 0.619 0.449

FedACG [32] + MAML 16.63 27.5 0.547 0.738 0.526 0.415
+ FOMAML 18.48 24.04 0.572 0.638 0.43 0.416
+ Reptile 17.38 22.63 0.505 0.587 0.727 0.612
+ meta-NSGD 12.49 5.15 0.395 0.003 0.923 1.571
+ Ours 14.71 26.97 0.524 0.723 0.606 0.441

Table 8. Results of various reconstruction quality metrics (PSNR, SSIM, LPIPS) and privacy metrics (PSNRp, SSIMp, LPIPSp) on the
PetFace dataset [49].

Modality Video
Dataset GolfDB [42]

Method \ Metric PSNRp(↓) PSNR(↑) SSIMp(↓) SSIM(↑) LPIPSp(↑) LPIPS(↓)

Local - 26.92 - 0.796 - 0.27

FedAvg [41] + MAML 21.21 29.68 0.657 0.867 0.385 0.131
+ FOMAML 20.82 28.57 0.634 0.843 0.445 0.166
+ Reptile 19.89 27.22 0.562 0.811 0.66 0.245
+ meta-NSGD 10.96 4.85 0.42 0.003 0.936 1.485
+ Ours 17.31 28.89 0.579 0.855 0.53 0.167

FedProx [38] + MAML 21 29.35 0.652 0.862 0.406 0.146
+ FOMAML 21.28 28.79 0.642 0.85 0.434 0.154
+ Reptile 19.79 27.21 0.559 0.811 0.665 0.242
+ meta-NSGD 10.96 4.84 0.42 0.003 0.936 1.486
+ Ours 15.68 28.96 0.546 0.856 0.543 0.164

Scaffold [30] + MAML 21.23 29.11 0.658 0.857 0.403 0.157
+ FOMAML 21.27 28.78 0.648 0.849 0.427 0.161
+ Reptile 20 27.23 0.568 0.812 0.651 0.24
+ meta-NSGD 10.96 4.84 0.42 0.003 0.936 1.486
+ Ours 16.21 29.23 0.56 0.861 0.528 0.149

FedNova [61] + MAML 21.56 29.63 0.669 0.868 0.378 0.127
+ FOMAML 20.12 28.52 0.616 0.842 0.496 0.156
+ Reptile 19.92 27.27 0.563 0.814 0.662 0.235
+ meta-NSGD 10.96 4.84 0.42 0.003 0.936 1.485
+ Ours 15.71 28.98 0.549 0.856 0.517 0.161

FedExP [28] + MAML 21.21 29.68 0.657 0.867 0.385 0.131
+ FOMAML 20.82 28.57 0.634 0.843 0.445 0.166
+ Reptile 19.89 27.22 0.562 0.811 0.66 0.245
+ meta-NSGD 10.96 4.85 0.42 0.003 0.936 1.485
+ Ours 15.38 28.1 0.53 0.834 0.54 0.204

FedACG [32] + MAML 21.09 29.51 0.657 0.866 0.398 0.132
+ FOMAML 21.12 28.7 0.637 0.847 0.445 0.167
+ Reptile 19.83 27.23 0.561 0.812 0.658 0.24
+ meta-NSGD 10.96 4.84 0.42 0.003 0.936 1.485
+ Ours 15.94 28.99 0.535 0.858 0.584 0.165

Table 9. Results of various reconstruction quality metrics (PSNR, SSIM, LPIPS) and privacy metrics (PSNRp, SSIMp, LPIPSp) on the
GolfDB dataset [42].

Modality 3D (NeRF)
Dataset Cars [6]

Method \ Metric PSNRp(↓) PSNR(↑) SSIMp(↓) SSIM(↑) LPIPSp(↑) LPIPS(↓)

Local - 17.13 - 0.844 - 0.319

FedAvg [41] + MAML 19.73 23.08 0.827 0.901 0.343 0.128
+ FOMAML 19.73 23.66 0.827 0.905 0.343 0.112
+ Reptile 19.96 21.98 0.839 0.892 0.311 0.154
+ meta-NSGD 6.85 10.62 0.672 0.767 0.798 0.566
+ Ours 12.15 24.05 0.798 0.904 0.537 0.095

FedProx [38] + MAML 19.67 22.94 0.826 0.9 0.346 0.129
+ FOMAML 19.67 23.73 0.826 0.907 0.346 0.11
+ Reptile 19.95 22.11 0.839 0.891 0.311 0.155
+ meta-NSGD 6.85 10.91 0.672 0.779 0.798 0.547
+ Ours 12.14 23.98 0.798 0.902 0.537 0.096

Scaffold [30] + MAML 19.07 24.21 0.811 0.911 0.372 0.092
+ FOMAML 19.07 24.47 0.811 0.912 0.373 0.086
+ Reptile 19.81 22.6 0.936 0.896 0.322 0.137
+ meta-NSGD 6.85 10.63 0.672 0.762 0.798 0.559
+ Ours 14.4 24.34 0.798 0.91 0.514 0.086

FedNova [61] + MAML 19.72 23.63 0.827 0.907 0.344 0.109
+ FOMAML 19.72 23.27 0.827 0.903 0.344 0.121
+ Reptile 19.96 22.7 0.838 0.897 0.311 0.135
+ meta-NSGD 6.85 10.6 0.672 0.763 0.798 0.561
+ Ours 12.14 24.12 0.798 0.903 0.537 0.096

FedExP [28] + MAML 19.81 22.87 0.829 0.899 0.339 0.14
+ FOMAML 19.81 22.81 0.829 0.899 0.339 0.141
+ Reptile 20.91 22.03 0.851 0.891 0.267 0.161
+ meta-NSGD 6.85 10.61 0.672 0.765 0.798 0.571
+ Ours 12.17 24.05 0.798 0.905 0.537 0.093

FedACG [32] + MAML 19.9 22 0.832 0.891 0.328 0.155
+ FOMAML 19.9 21.95 0.832 0.89 0.328 0.155
+ Reptile 20.13 22.26 0.842 0.894 0.299 0.148
+ meta-NSGD 6.85 10.59 0.672 0.761 0.798 0.57
+ Ours 10.93 22.45 0.779 0.881 0.601 0.133

Table 10. Results of various reconstruction quality metrics (PSNR, SSIM, LPIPS) and privacy metrics (PSNRp, SSIMp, LPIPSp) on the
Cars dataset [6].

Modality 3D (NeRF)
Dataset FaceScape [65, 70]

Method \ Metric PSNRp(↓) PSNR(↑) SSIMp(↓) SSIM(↑) LPIPSp(↑) LPIPS(↓)

Local - 23.67 - 0.772 - 0.178

FedAvg [41] + MAML 21.31 28.59 0.658 0.904 0.421 0.053
+ FOMAML 21.24 28.65 0.658 0.905 0.416 0.051
+ Reptile 21.92 28.24 0.684 0.895 0.368 0.056
+ meta-NSGD 7.72 11.29 0.191 0.461 0.934 0.742
+ Ours 15.16 27.88 0.268 0.894 0.665 0.061

FedProx [38] + MAML 21.31 28.59 0.658 0.904 0.421 0.053
+ FOMAML 21.24 28.65 0.658 0.905 0.416 0.051
+ Reptile 21.89 28.21 0.683 0.895 0.37 0.056
+ meta-NSGD 7.72 11.29 0.191 0.461 0.934 0.742
+ Ours 15.16 27.88 0.268 0.894 0.665 0.061

Scaffold [30] + MAML 21.09 28.51 0.651 0.902 0.44 0.053
+ FOMAML 21.01 28.51 0.65 0.903 0.435 0.053
+ Reptile 21.79 28.14 0.677 0.893 0.384 0.058
+ meta-NSGD 7.72 11.29 0.191 0.461 0.933 0.741
+ Ours 13.94 27.53 0.195 0.888 0.748 0.065

FedNova [61] + MAML 21.37 28.59 0.661 0.903 0.421 0.053
+ FOMAML 21.3 28.62 0.66 0.905 0.416 0.052
+ Reptile 21.98 28.17 0.686 0.894 0.369 0.057
+ meta-NSGD 7.72 11.29 0.191 0.461 0.933 0.743
+ Ours 15.45 27.86 0.282 0.894 0.648 0.061

FedExP [28] + MAML 21.33 27.64 0.659 0.886 0.419 0.065
+ FOMAML 21.26 27.66 0.659 0.887 0.415 0.064
+ Reptile 21.93 28.27 0.685 0.896 0.367 0.058
+ meta-NSGD 7.72 11.29 0.191 0.461 0.933 0.742
+ Ours 13.69 26.12 0.191 0.843 0.766 0.103

FedACG [32] + MAML 22.28 28.02 0.7 0.897 0.327 0.055
+ FOMAML 22.24 28.03 0.699 0.9 0.327 0.052
+ Reptile 22.07 28.32 0.691 0.896 0.356 0.055
+ meta-NSGD 7.72 11.29 0.191 0.461 0.934 0.742
+ Ours 14.83 27.46 0.365 0.876 0.669 0.074

Table 11. Results of various reconstruction quality metrics (PSNR, SSIM, LPIPS) and privacy metrics (PSNRp, SSIMp, LPIPSp) on the
FaceScape dataset [65, 70].

