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1. Ablation Study. Number of Nearest Neigh-
bors

We investigate how increasing the number of nearest neigh-
bors affects the quality of scene description and question
answering tasks. The number of nearest neighbors varies
from 0 to 4.

When no nearest neighbors are used, the model oper-
ates as a baseline Chat-Scene approach, representing the
scene as a list of objects without semantic relationships. The
maximum number of nearest neighbors that can be added
for each object is four, constrained by GPU memory lim-
itations during model training. In these experiments, we
use GT instance segmentation to eliminate errors in graph
construction that could otherwise impact performance on 3D
vision-language tasks. The base LLM used in this study is
LLAMA3-8B-Instruct.

As shown in Fig. 1, increasing the number of nearest
neighbors improves the quality of object descriptions in the
scene, while causing only a slight increase in generation
time. Notably, in dense scene captioning tasks, inference
speed depends not only on the number of tokens used to
represent the scene but also on the length of the generated
description. Therefore, we observe only a small increase in
generation time when comparing graphs with two and four
nearest neighbors.

Fig. 2 and Fig. 3 show that semantic relationships be-
tween objects enhance performance in question answering
tasks on the ScanQA and SQA3D datasets. However, for
question answering tasks, the optimal number of nearest
neighbors is 2, as increasing it to 4 leads to a drop in perfor-
mance. The impact of semantic edges is harder to assess in
question answering tasks than in visual grounding or object
description tasks, since some question types do not require
knowledge of object spatial relationships.

For further experiments, we select 2 nearest neighbors, as
it provides the best trade-off between performance gains and
computational complexity across all three tasks.

Figure 1. Dependence of inference speed and dense scene cap-
tioning quality on the number of nearest neighbors in the object
subgraph. This experiment utilizes the GT instance segmentation.

Figure 2. Dependence of inference speed and question answering
quality on ScanQA dataset on the number of nearest neighbors
in the object subgraph. This experiment utilizes the GT instance
segmentation.
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Instance Number Minimal ScanRefer Multi3DRefer Scan2Cap ScanQA Sqa3D
Methods segmentation of edges distance, cm Acc@0.5↑ F1@0.5↑ C@0.5↑ B-4@0.5↑ C↑ B-4↑ EM↑
3DGraphLLM-0 GT 0 - 61.5 64.4 89.5 40.1 83.1 15.6 55.2
3DGraphLLM-2 GT 2 0 66.9 69.9 95.2 42.7 88.6 16.2 56.3
3DGraphLLM-0 Mask3D 0 - 52.0 55.1 80.0 37.5 84.0 15.8 53.8
3DGraphLLM-2 Mask3D 2 0 55.6 58.2 80.8 36.4 85.7 15.1 56.0
3DGraphLLM-2 Mask3D (+ NMS) 2 0 55.7 58.6 82.3 36.8 86.2 16.0 56.2
3DGraphLLM-2 Mask3D (+ NMS) 2 1 56.2 58.7 82.9 37.3 85.4 15.1 55.6
3DGraphLLM-0 OneFormer3D 0 - 50.0 52.8 73.5 34.3 87.3 16.5 53.8
3DGraphLLM-2 OneFormer3D 2 0 52.8 55.8 70.2 32.7 83.3 15.0 55.0
3DGraphLLM-2 OneFormer3D (+NMS) 2 1 54.6 57.2 72.4 33.0 81.3 12.9 55.0

Table 1. Ablation study on semantic edge role depending on quality of instance segmentation.

Figure 3. Dependence of inference speed and question answering
quality on SQA3D dataset on the number of nearest neighbors
in the object subgraph. This experiment utilizes the GT instance
segmentation.

2. Ablation Study. Quality of Instance Segmen-
tation.

For the graph, where the vertices contain objects obtained
from 3D instance segmentation, we observe a consistent
improvement in the performance of all three 3D Vision-
Language tasks. When transitioning from GT segmenta-
tion to a noisy graph composed of vertices obtained using
Mask3D, we also observe improvements in metrics for all
three tasks (see Tab. 1). However, this improvement is less
pronounced compared to GT instance segmentation.

We compare the graphs of nearest neighbors obtained
from GT instance segmentation and Mask3D instance seg-
mentation. The analysis shows that Mask3D instance seg-
mentation contains a large number of object duplicates, as
the scene is always divided into N=100 segments. The pres-
ence of object duplicates among the neighbors leads to a
reduction in useful information about the object’s environ-
ment in its subgraph. To address the duplicates in the vertices
of the subgraphs, we use two filters. The NMS filter with
an IoU threshold of 0.99 removes duplicate objects from
the neighbors. The minimum distance filter between the

centers of the object point clouds excludes the object’s own
duplicates from its neighbors.

Tab. 1 shows that adding these filters consistently im-
proves the performance of visual grounding and object de-
scription tasks for the graph obtained through Mask3D in-
stance segmentation. Since we expect an effect from adding
semantic edges specifically for these tasks, we keep this filter
in further experiments.

We also experiment with different methods for instance
segmentation to create scene graph vertices. We use another
method for instance segmentation, OneFormer3D, filtering
out vertices with confidence < 0.1. We observe that for
scene graphs with such vertices, semantic edges improve
the performance of the visual grounding task. At the same
time, the combination of nearest-neighbor filters proves ef-
fective for this type of scene segmentation, increasing the
performance of object grounding and scene captioning tasks.
However, since OneFormer3D showed worse results with
these hyperparameters compared to Mask3D, and other base-
line methods use Mask3D for object proposals, we chose
Mask3D for the final version of the pipeline.

3. Ablation Study. Subgraph Representation.
We explore the possibility of further flattening the graph by
replacing relationship triplets with a sequence of semantic
edges. As a result, object N is described by the following
sequence: {< OBJN > F 2d

N , F v
N , F e

Nk1
, F e

Nk2
}.

Tab. 2 shows that representing relationships as triplets
improves the performance of the object grounding task.
The object-centered representation of relationships improves
question answering performance on ScanQA according to
the CIDEr metric, while the BLEU-4 metric remains on
par with the flat graph representation as a sequence of rela-
tionships. For the SQA3D dataset, both approaches yield
comparable results. In the dense scene captioning task, we
observe a decrease in the CIDEr metric but an improvement
in the Scan2Cap metric. However, as shown in Sec. 5,
n-gram-based metrics may produce unreliable results when
evaluating text generated by LLMs. Considering this, and the
fact that the impact of semantic edges is most interpretable
in the object grounding task, we represent relationships as
triplets in subsequent experiments.



Instance Relations Number ScanRefer Multi3DRef Scan2Cap ScanQA Sqa3D
Methods segmentation as triplets of edges Acc@0.5↑ F1@0.5↑ C@0.5↑ B-4@0.5↑ C↑ B-4↑ EM↑
3DGraphLLM-0 Mask3D ✗ 0 52.0 55.1 80.0 37.5 84.0 15.8 53.8
3DGraphLLM-2 Mask3D ✗ 2 54.2 56.3 87.2 39.3 85.6 15.1 54.6
3DGraphLLM-2 Mask3D ✓ 2 54.3 57.3 85.6 39.6 87.4 14.9 54.5

Table 2. Ablation study on subgraph representation.

Q: Name the type of
room described by the
list of object.
A: Hotel room.

Q: Can I make dinner in
this room?
A: No.

Q: What object can I use 
to do my homework?
Answer with object ID.
A: <OBJ037>

OBJ037

Figure 4. Functional queries about the room and objects to the 3DGraphLLM. 3DGraphLLM is capable of answering questions about the
functional properties of the room and its room type as well as discerning the functional properties of objects in a room.

Q: What is sitting beside
the toilet?
A: Trash can.
GT: "bath tub", "toilet
paper on 1 side shower
on other"
Q: The bed is white with a
brown frame. it is to the
right of the nightstand
A: <OBJ016>
GT: <OBJ033>

OBJ016

OBJ033

OBJ013

Q: Describe <OBJ013>.
A: This is a white toilet. It is to the right of the
shower curtain.
GT: 1. White toilet. Its right next a garbage
can and to the left of the shower.
2. It is the white toilet. It is sitting beside the
tub. 
3. It is the toilet by the curtain. It has a towel
on top of the lid.
4. This is a white toilet. There is a bathtub to
the right of it and a counter to the left. The lid
is closed.
5. The object is a toilet. It is the only toilet in
the room.

Figure 5. Common failure cases of 3DGraphLLM related to spatial relationships. In the question answering task, 3DGraphLLM incorrectly
identifies the front/back and left/right directions relative to the observer. In the visual grounding task, 3DGraphLLM confuses left and right.
The GT object is highlighted in green, and the 3DGraphLLM prediction is highlighted in red. In the object captioning task, 3DGraphLLM
uses a spatial reference not mentioned in the GT descriptions. However, the description is correct qualitatively.

4. Functional Queries

We illustrate the ability of 3DGraphLLM to leverage com-
mon sense knowledge in its responses to question types not
present in the training dataset in Fig. 4.

5. Common Failure Cases

We illustrate the most common failure cases of
3DGraphLLM related to spatial relationships in Fig. 5.

It is important to note that the quality metrics in the
Scan2Cap, ScanQA, and SQA3D benchmarks are based
on n-gram-based metrics comparing generated answers with
reference ones, such as BLEU-1, BLEU-2, BLEU-3, BLEU-
4, CIDEr, ROUGE-L, METEOR. The Exact Matching (EM)
metric compares the exact match of the answer with the GT
answer. The drawback of these metrics is that if an object

description or answer to a question contains spatial relation-
ships not present in the reference descriptions, it leads to a
decrease in the score. Additionally, these metrics are unable
to adequately evaluate LLM responses, considering the rich-
ness of formulations and the freedom to choose visual and
spatial properties of an object that may be mentioned by the
model. These responses represent a special type of ”failure
cases,” illustrated in Fig. 5 on the right. For this type, the
object description or answer to the question is correct from
a qualitative point of view but shows zero value according to
the metric CIDEr.

6. Scalability with Number of Scene Objects
To evaluate scalability, we analyze how memory usage and
inference time vary with the number of objects in a scene.
The maximum number of objects considered corresponds



to the highest counts observed in the ScanNet and 3RScan
datasets. As shown in Tab. 3, both memory usage and in-
ference time increase gradually as the number of objects
in the scene grows. This demonstrates that while resource
consumption scales with object count, the growth remains
manageable and does not compromise the method’s practical
applicability within real-world scene configurations.

Number of Objects Memory Usage (Gb) Inference Time for 1 token (s)
10 23 0.08
50 28 0.14
100 35 0.23

Table 3. Performance metrics for varying number of objects in a
3D scene.


