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Supplementary Material

A. Benchmark details
A.1. MuirBench

MuirBench is designed for multi-image understanding,
comprising 11,264 images and 2,600 multiple-choice
questions, with an average of 4.3 images per instance. Muir-
Bench evaluates models across 12 key tasks, each represent-
ing 2.5% to 17.8% of the dataset:

* Geographic Understanding (GU): Reasoning over maps
and geographic features (e.g., “Among these map images,
which one depicts overlapping geographic regions like <
imgl >?7).

* Counting (C): Quantifying specific objects across multi-
ple images (e.g., “How many vases have a painted design
all over in the images?”).

* Action Understanding (AU): Matching sequential images
to actions (e.g., “What is the action displayed in the
video?”).

* Visual Grounding (VG): Locating specific objects and ex-
tracting relevant information (e.g., “This is the McDon-
ald’s my sister bought < img1l >. This is the McDonald’s
$1 $2 83 Dollar Menu < img2 >. Could you please tell
me how much my sister spent on this McDonald’s?”).

e Image-Text Matching (ITM): Associating text snippets
with corresponding images (e.g., “Which images has 1
apple and 5 bananas?”).

¢ Ordering (O): Arranging images based on textual descrip-
tions (e.g., “The baby attempts to take off the clothes.
What is the correct order of images according to the given
context?”).

* Scene Understanding (SU): Analyzing multi-view scenes
from surveillance images (e.g., “What’s the color of the
car parked behind the black van in the given images?”).

* Difference Spotting (DS): Identifying differences be-
tween images (e.g., “Can you determine which slide
serves a different function compared to the others?”).

e Cartoon Understanding (CU): Interpreting stories con-
veyed in cartoon images (e.g., “What is the main content
of this comic strip?”).

e Diagram Understanding (DU): Extracting information
from diagram images (e.g., “Which object is below the
bed?”).

 Attribute Similarity (AS): Identifying a specific attribute
across multiple images (e.g., “Which of the following im-
ages shares the same scene with < imgl > but contains
the object potted plant?”).

* Visual Retrieval (VR): Identifying images containing the

same building (e.g., “Can you find the images containing
the same building as in < imgl >?”).

A.2. MIBench

In MIBench, multi-image inputs are categorized into three

scenarios: Multi-Image Instruction (MII), Multimodal

Knowledge-Seeking (MKS), and Multimodal In-Context

Learning (MIC).

e MII involves perception, comparison, and reasoning
across multiple images (e.g., “Do the two images show
the same number of cats?”).

* MKS assesses an MLLM'’s ability to retrieve relevant in-
formation from external knowledge provided in an inter-
leaved image-text format. Unlike MII, MKS questions
may focus on a single image or be independent of visual
content.

* MIC evaluates MLLMs’ ability to answer visual ques-
tions with the aid of multimodal demonstrations (i.e., ex-
amples).

A.2.1. Multi-Image Instruction (MII)

Based on the semantic types of instructions, MII is further

divided into 5 tasks:

* General Comparison (GC): Evaluates the model’s un-
derstanding of individual images, including aspects like
scene, attributes, and location, and its ability to compare
these images (e.g., “Can the given sentence accurately il-
lustrate what’s in these two images? Two dogs are lying
in the grass in each of the images.”).

* Subtle Difference (SD): Assesses fine-grained perception
to detect minor differences between similar images (e.g.,
“What are the differences between image 1 and image
227).

* Visual Referring (VR): Tests the model’s ability to under-
stand object relationships based on referring expressions
(e.g., “Based on image 1, what is the relationship between
image 2 and image 37”).

» Temporal Reasoning (TR): Measures comprehension of
temporal relationships in consecutive images (e.g., “What
action do these images show?”).

* Logical Reasoning (LR): Requires causal reasoning about
objects or events depicted in images (e.g., “Why did the
boy in black extended his hands after the boy in white
extended his hands?”).

A.2.2. Multimodal Knowledge-Seeking (MKS)

Based on the form of external knowledge, MKS is divided
into 4 tasks:



¢ Fine-grained Visual Recognition (FVR): Evaluates the
model’s ability to recognize objects in a query image us-
ing multiple reference images, requiring an understand-
ing of image-label correspondence and similarity linking
(e.g., “Look at the dog pictures presented above and tell
me which type of dog is represented in this image.”).

e Text-Rich Images (TRI) VQA: Assesses the model’s abil-
ity to extract relevant information from text - heavy im-
ages, which represent a common real-world scenario in-
volving tasks like reading slides and documents (e.g.,
What is the population of the country where the cabinet is
named ‘Kabinet Kerja’?”).

* Vision-linked Textual Knowledge (VTK): Tests the
model’s ability to link query images with relevant external
knowledge (e.g., Wikipedia) and extract useful informa-
tion from corresponding text (e.g., “Which city or region
does this building locate in?”).

e Text-linked Visual Knowledge (TVK): Evaluates the
model’s capability to answer text-only questions about
the visual attributes of specific objects when given inter-
leaved image-text knowledge (e.g., “At the victory cer-
emony for Boxing at the 2018 Summer Youth Olympics
how many medalists were holding their hand over their
heart?”).

A.2.3. Multimodal In-Context Learning (MIC)

In-context learning allows LLMs to improve performance

when provided with a series of demonstrations. Recent

studies introduce a more fine-grained assessment by divid-

ing MIC into 4 distinct tasks:

* Close-ended VQA: Requires the model to select answers
from a predefined set provided via multimodal demos, as-
sessing its ability to learn image-label mappings.

* Open-ended VQA: Evaluates the model’s ability to infer
task patterns from demos when answers fall outside the
predefined set.

» Hallucination Mitigation: Investigates the impact of MIC
on hallucination.

* Demo-based Task Learning: Tests the model’s ability to
rapidly adapt to new tasks with few-shot demonstrations
by removing explicit task instructions and presenting de-
mos in a structured format (e.g., “rabbit: 3”).

A.3. Mantis-Instruct

Mantis-Instruct, the first multi-image instruction-tuning
dataset, comprising 721K instances across 14 subsets, de-
signed to cover all essential multi-image skills.

10 subsets are sourced from existing datasets:
* Reasoning: NLVR2, IconQA.
¢ Comparison: DreamSim, Birds-to-Words.
» Temporal Understanding: NExT-QA, STAR.
4 newly curated subsets:
¢ Coreference Resolution: LLaVA-665k-multi, LRV-multi.
» Expanded Reasoning: Contrast-Caption, Multi-VQA.

Accuracy
MLLM Vanilla Replaced visual inputs
1 2 3
Mantis-8B 28.6 62.8 742 98.9
Qwen-VL-9.6B 322 37.8  48.1 79.2

Table 5. Accuracy of MLLMs on the FVR task under different
numbers of original visual input replacements, where “Vanilla”
denotes O replaced visual inputs, and columns 1-3 represent 1, 2,
and 3 replaced visual inputs, respectively.

To enhance instruction formatting, interleaving image
placeholders are inserted into text based on various heuris-
tics.

B. The impact of black image injection on dis-
tribution shift

We added redundant black blank images to the visual in-
put to explore the impact of visual redundancy on MLLMs
in the MVQA task. However, this impact might also stem
from the distribution shift of visual input, i.e., the pure
black images themselves could affect the output responses
of MLLMs. Thus, we designed an exploratory experiment
to demonstrate the true cause of the performance drop in
Fig. 2(a). As shown in Tab. 5, we replaced the original
visual inputs (except the correct answer) in the FVR task
with 1-3 pure black images, respectively. Notably, the accu-
racy of MLLMs in question answering gradually increased
as more visual inputs were substituted. This improvement
occurs because the reduction of potentially confusing im-
ages, coupled with the MLLMs’ ability to recognize these
blank black images, facilitates the selection of the correct
answers. This experiment serves to further validate the con-
clusion drawn in Sec 3.2.

C. Model details

e LLaVA-v1.5-7B [29]: CLIP ViT-L/14 [35] serves as the
vision encoder and Vicuna-v1.5-7B [52] as the LLM.

* DeepSeek-vl-7B [33]: SAM-B [21] & SigLIP-L [47]
serve as the vision encoder and DeepSeek-7B [5] as the
LLM.

e Mantis-8B [20]: SigLIP SoViT-400M/14 * serves as the
vision encoder and LLlama3-8B [14] as the LLM.

* InternVL2-8B [11]: InternViT-300M-448px [12] serves
as the vision encoder and InterLM?2.5-7B [6] as the LLM.

e Qwen-VL-9.6B [4]: CLIP ViT-G/14 [35] serves as the
vision encoder and Qwen-7B [3] as the LLM.

* Idefics2-8B [22]: SigLIP-L [47] serves as the vision en-
coder and Mistral-7B [19] as the LLM.

“https://huggingface.co/google/siglip-so400m-patch14-384
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Figure 5. More Qualitative visualization results.

¢ LLaVA-OV-Qwen2-7B [23]: SigLIP SoViT-400M/14 *
serves as the vision encoder and Qwen2-7B[39] as the
LLM.

D. Ablation of text selection strategy

Strategy FVR task of MIBench
Accuracy | Compression ratio
Vanilla 29.2 0.0%
Question-based 35.8 54.2%
Caption-based 36.8 57.6%

Table 6. Comparison of different text selection strategies.
“Vanilla” denotes the original LLaVA-v1.5-7B, while “Question-
based” and “Caption-based” represent the results of obtaining re-
sponse maps using question texts and corresponding image cap-
tions, respectively.

Captions offer object-centric textual descriptions, which
are typically more precise than question texts, and facilitate
the accurate extraction of critical visual tokens. However,
such captions are not always available. In the visual an-
choring process, the response map is calculated exclusively

from the image and question text when captions are absent.
We compare caption-based and question-based strategies on
the FVR task as shown in Tab. 6, where the latter replaces
captions with questions to extract critical visual regions. Al-
though question-based strategies use coarser text than cap-
tions, they effectively mitigate the submergence of critical
visual tokens by visual redundancy. This approach does ex-
hibit a slight performance decline, as question texts have
less direct relevance to visual inputs than captions, leading
to less accurate anchoring.



