Instant Gaussianlmage: A Generalizable and Self-Adaptive Image
Representation via 2D Gaussian Splatting (Supplementary Material)

Zhaojie Zeng', Yuesong Wang'; Chao Yang?, Tao Guan', Lili Ju?
1 School of Computer Science & Technology, Huazhong University of Science and Technology
2 NERCGIS, China University of Geoscience (Wuhan)
3 Department of Mathematics, University of South Carolina

{zhaojiezeng, yuesongwang, gd-gt}@hust.edu.cn, yangchao@cug.edu.cn, Jjul@math.sc.edu

In this supplementary material, we provide additional ex-
planations for conclusions presented in the main paper, il-
lustrate more technical details, and supplement experimen-
tal results.

1. Explanations

1.1. Analysis of CDF Sampling in Sec. 3.3

In Sec. 3.3 of the main paper (Dithering with Ppq), we
state:

“An alternative is CDF sampling with a fixed
number of Gaussians, as in [5]. While it works
when high- and low-entropy regions are balanced,
it degrades rendering quality when high-entropy
regions dominate, reducing point density where
detail is needed. Conversely, in low-entropy im-
ages, excessive points are allocated to smooth re-
gions, leading to redundancy.”

This implies that when an image is dominated by
low-entropy or high-entropy regions, the CDF-based sam-
pling strategy also suffers from overfitting or underfitting
issues[3], similar to the threshold-based sampling.

To further analyze the behavior of CDF sampling, we
conduct a simple simulation experiment. We generate three
types of synthetic image data with different entropy distri-
butions:

* Balanced entropy (green) — where pixel counts are
evenly distributed across entropy intervals.

¢ Low-entropy dominant (orange) — where low-entropy
regions contain more pixels.

* High-entropy dominant (blue) — where high-entropy re-
gions contain more pixels.

As shown in Fig. | the top left plot, these distribu-
tions define the initial pixel counts per entropy interval.

*Corresponding author.

We then apply CDF sampling to each distribution and ob-
tain the number of sampled points in each entropy inter-
val, illustrated in the top right plot. It is evident that in
both the balanced and high-entropy dominant cases, more
points are allocated to high-entropy regions, while in the
low-entropy dominant case, mid-entropy regions receive the
highest number of sampled points.

To quantify the sampling efficiency, we normalize the
number of sampled points by the corresponding pixel
counts in each entropy interval, resulting in the bottom
plot. Using the balanced case as a reference, we observe
that:

* When low-entropy regions dominate, the sampling den-
sity is significantly higher than the balanced case, leading
to redundancy (overfitting).

* When high-entropy regions dominate, the sampling den-
sity is notably lower than the balanced case, leading to
insufficient representation (underfitting).

These results confirm that CDF sampling alone struggles to

maintain an optimal balance between high- and low-entropy

regions.

1.2. Rationale Behind Using Delaunay Triangula-
tion in Sec. 3.4

In Sec. 3.4 Ellipse Fitting, we argue against directly predict-
ing the scaling of each Gaussian using a network. Instead,
we first perform Delaunay triangulation and then predict the
offsets. The primary reasons for this choice are as follows:
Most deep learning methods handling similar tasks [4]
adopt a normalized scale approach, such as learning rela-
tive sizes or operating in a specific feature space to enhance
adaptability. While some studies directly predict pixel-level
absolute values, such methods typically rely on fixed im-
age sizes. If the input dimensions vary, these predictions
may become invalid. Given that our task involves images of
varying sizes, a normalized scale approach is necessary.
Several normalization strategies exist. One simple ap-
proach is to define an absolute scale based on the nearest

Pixel Distribution

Sampled Point Distribution

100000

Entropy Balanced
~e— Low-Entropy Dominant

80000 High-Entropy Dominant

60000 -

Count

40000 -

20000

7000 Entropy Balanced
—e— Low-Entropy Dominant
6000
High-Entropy Dominant
5000
£ 4000
=3
o
3000

2000

1000

Entropy

0= T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Density Changes with Entropy

0= T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Entropy

Entropy Balanced

0141 o Low-Entropy Dominant
0.124 High-Entropy Dominant
0.104

z

g 0.08 4

5

a

0.06 1

0.04 4

0.02

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Entropy

Figure 1. CDF Sampling Analysis. A simulated experiment analyzing the effects of CDF sampling under different entropy distributions.
Top left: Pixel distribution for balanced, low-entropy dominant, and high-entropy dominant cases. Top right: Sampled point distribution
after applying CDF sampling. Bottom: Normalized sampling density, showing redundancy in low-entropy dominant cases (overfitting)
and insufficient representation in high-entropy dominant cases (underfitting).

neighbor distance and then learn a relative scale accord-
ingly. While effective for uniformly distributed points, this
method struggles with non-uniform distributions—closely
spaced points may result in an absolute scale that fails to
provide full coverage, increasing training complexity.

Thus, we prioritize an initialization strategy that en-
sures full image coverage while minimizing overlap be-
tween primitives to reduce learning complexity. To achieve
this, we adopt Delaunay Triangulation.

Specifically, after obtaining the points via Floyd-
Steinberg Dithering, we compute the average nearest-
neighbor distance §. To ensure full coverage, we insert ad-
ditional boundary points at intervals of approximately 36
along the image edges. After triangulation, we fit ellipses
to the generated triangles using OpenCV’s fitEllipse
function [1], which requires at least six discrete points. To
meet this requirement, we insert the midpoints of each tri-
angle’s three edges, yielding six points per triangle.

The fitted major and minor axes are scaled by 0.5 to
serve as the absolute scale of each Gaussian. The fitted el-
lipse centers and rotation angles are normalized to the range
[—1,1].

2. Details

2.1. Feature Extraction Details

Due to space limitations in the main paper, we provide a
detailed explanation of how the features in Fig. 2 are ob-
tained. These include the Triangle Feature, Ellipse Feature,
Sampled Color, and Image Feature. After performing De-

t; !
i Sy 1
/ ° OO et otz- -3 .
(Xe, Ye) Ellipse Feature

- ﬁ
Normalize Triangle Feature

Feature] @)=
Map Grid Sample ﬁji
Sampled Color
lGrid Sample

Image

[J M z

|] ® Feature I 5 —_ ﬁjjjji
Reduction % @ Image Feature

[EEEEEN =

Sampled Feature

Figure 2. Feature organization for MLP input. We construct the
MLP input by combining multiple feature components. Geometric
features are extracted from the triangle t; and its fitted ellipse e;,
while grid sampling provides local deep features and sampled col-
ors from the input image. The extracted features undergo feature
reduction and layer normalization before concatenation, forming
the final input vector for the MLP.

launay triangulation, we obtain a set of triangle represen-
tations {t;}Z ,, where each t; consists of the three vertex
coordinates of the corresponding triangle:

ZTa Ya
ti = [Va,Vb,VC]T = |ZTp Yo | » (1)
Ze Ye

Triangle Feature. Our goal is to normalize the triangle’s
area and obtain relative coordinates in a normalized space.
Given a set of triangles represented by their three vertex
coordinates t;, we first compute the area of each triangle
as:

1
&=§Wd%—%%ﬂﬂh—%%ﬂdw—%ﬂ(m

To normalize the scale, we apply a transformation:

1

A 3)

S; =
where s; is the scaling factor. We then compute the triangle
center:

1
C; = g(va+vb+vc)7 (4)

where v,, vy, v are the vertex coordinates. The final nor-
malized triangle representation is given by:

ti = si(t; — ¢;),)

which ensures that all triangles have a consistent scale while
preserving their relative shape. The obtained normalized
coordinates t! serve directly as our triangle feature (dimen-
sion is 6).

Ellipse Feature. We adopt the ellipse fitting method de-
scribed in [1], which requires at least six points. For each
triangle, we construct a vertex set:

Vg +Vy V4 Ve va+vc}
2 ’ 2 ’ 2 '

tf = {Vm Vb, Ve, (6)
Using these points, we fit an ellipse and obtain a set of el-
lipses {e;}~_,, where each ellipse is characterized by its
center position, major and minor axes, and rotation angle:

ei - {(xeayE))(Sme)Sye)?HE}' (7)

The final ellipse feature (dimension is 4) is represented as:

Sz,

_Sme o 8
T ®

fze = {weyy&

Color Feature To extract the color feature, we sample col-
ors from the image at the three triangle vertices and the tri-
angle center. The sampling positions are defined as:

t,f = {Vaavb7vcaci}7 (9)

where the triangle center is computed as:

1
c; = g(va—i—vb—&—vc). (10)
The color values at these positions are obtained using grid
sampling on image I, which served directly as our color
feature (dimension is 12).

£e = I(t5). (11)

Image Feature Similar to the color feature extraction, we
sample features from the 64-dimensional feature map pro-
duced by the ConvNeXt-based UNet at the three triangle
vertices and the triangle center:
t! = t¢. (12)
The feature values at these positions are obtained using grid
sampling on feature map F':
t/ = F(t]). (13)

The sampled features are then concatenated and processed
through a feature reduction network:

7 = ReLU(W3ReLU(W,ReLU(W 1 f)))), (14)

where W1, W5, W3 are linear transformation matrices re-
ducing the feature dimension sequentially from 4d — 4d —
2d — d. Finally, the output feature is normalized using
Layer Normalization. The final image feature dimension is
d = 64.

2.2. Network Design

ConvNeXt-based UNet. For feature extraction, we em-
ploy a ConvNeXt-based UNet. The encoder uses the base
model configuration with:

depths = [3,3,27,3], dims = [128,256,512,1024].
15)
The decoder follows the implementation of Pytorch-UNet.
Position Field. The Position Field network transforms the
feature of each pixel into a probability value to generate the
Position Probability Map (PPM). It takes a 64-dimensional
feature vector as input and outputs a single probability

value:
Pout = O’(VV;;R(?LU(VVQReLU(VVlIl)in)))7 (16)

where p;, € R is the input feature, W, Wo, W3 are
linear transformation matrices, and o denotes the Sigmoid
activation function to ensure output values are within [0, 1].
BC Field. The BC Field network transforms the feature
of each primitive (dim = 86) into barycentric coordinates
(dim = 3):

bcoy = Softmax(W3ReLU(W3oReLU(W1by,)), (17)

where bcj, € R86 is the input feature, W, Wy, W3 are
linear transformation matrices, and the Softmax activation
ensures that the output barycentric coordinates sum to 1.

Y Field. The X Field predicts offsets for scaling and ro-
tation, adjusting the major and minor axes as well as the

orientation of the fitted ellipse. It takes a 94-dimensional
feature vector as input and outputs a 3-dimensional trans-
formation parameter:

Eout = WgRCLU(WgRCLU(Wl Zin)); (18)

where s;, € R3® represents the input feature, and
W1, Wy, W3 are linear transformation matrices. The out-
put consists of two scaling factors for the major and minor
axes and one rotation offset.

Opacity Field. The Opacity Field predicts the opacity of
each primitive based on its feature representation. It takes
a 94-dimensional input feature and outputs a single scalar
value:

Oout = 0(W3ReLU(W5ReLU(W10;,))), (19)

where o;, € R®0 is the input feature, W1, W,, W are
linear transformation matrices, and o (Sigmoid) ensures the
output opacity value is within the range [0, 1].

2.3. Obtain Pseudo PPM.

To train a network capable of predicting the Position Prob-
ability Map (PPM) that represents the Gaussian distribu-
tion, we first generate high-quality training data via Gaus-
sian decomposition using Gaussianlmage. We begin with
quadtree-based image partitioning, where blocks are recur-
sively subdivided based on the mean squared error (MSE)
of colors. If the MSE exceeds a predefined threshold, the
block is split into four smaller ones, continuing until either
the minimum block size of 4 x 4 is reached or the MSE
falls below 0.02. This adaptive partitioning can approxi-
mately estimate the required number of Gaussians for good
image representation, thus preventing the generation of a
low-quality pseudo PPM due to the inadequate number of
Gaussians. Next, Gaussians are initialized at the center of
each block. Finally, we train GaussianImage for 50,000 it-
erations.

After Gaussian decomposition, we compute the Gaus-
sian density at each pixel position x in the image. Specif-
ically, for each x, we estimate the minimal radius of a cir-
cle that encompasses K Gaussians, then the local Gaussian
density Dy is defined as the unit density of Gaussians in this
circle:

K

Dx = PR
= max (| px — i)

(20)

where p represents position coordinates, and ¢ indexes the
top-K nearest neighbors of x. In our experiments, we set
K = 10. Next, we convert this density map into a PPM,
which determines the probability of generating a Gaussian
at each pixel location:

K
max (||px — pi

]Ppseudo(x) = f(Dx) = N3,)1/2

2n

where f is a mapping function for a more smooth distribu-
tion and N3, denotes Three-Sigma Clipped Normalization,
formally defined as:

(= mean(x)
o = std(x)
Tmax = min(p + 30, max(x))
Tmin = max(y — 30, min(x)) (22)
g = L Zmin
Tmax — Lmin

/
Lnormalized = Clamp(fﬁ aov 1)

2.4. Dithering on PPM.

A key aspect of our method is the discretization of the pre-
dicted PPM using Floyd-Steinberg Dithering. Direct per-
pixel processing would generate an excessive number of
sampled points; therefore, we apply max pooling to divide
the PPM into k x k patches, where each patch’s probability
value is determined by the maximum probability within the
patch. By adjusting k&, we control the number of generated
Gaussians to achieve different levels of rendering detail.For
example, k = 3 for high-detail rendering while £ = 4 for
balanced rendering. To accelerate dithering, we implement
a GPU-accelerated version based on [2]. After obtaining
the sampled points, we apply upsampling to restore their
positions to the original resolution.

3. More Experiments

In this section, we provide additional experimental results
to validate the settings discussed in the main paper.

3.1. Additional Ablation Study

In the main paper, we noted that while certain settings may
not significantly impact final evaluation results, they can in-
troduce instability during training, making the model prone
to local optima or even training failure. In Fig. 3, we present
PSNR curves for both the training and test sets to illustrate
these effects.

The top row corresponds to the training curves for
“Dither with Img. Grad.” and “Color Field,” as discussed
in Tab. 3 of the main paper. Compared to our final model,
predicting Gaussian colors directly instead of opacity leads
to slower convergence and a tendency to get trapped in lo-
cal optima during mid-stage training. While the final model
performance remains similar, the opacity-based approach
results in a more efficient training process. Furthermore,
“Dither with Img. Grad.” struggles due to the significant
gap between image gradients and the true Gaussian distribu-
tion density, leading to both lower performance and a higher
likelihood of convergence issues.

The bottom row shows an ablation study on feature or-
ganization, evaluating the necessity of different features.

train/psnr
Dither with Img. Grad. Color Field = Final

28
26
24 [
22

20
Step

0 20 40 60 80
train/psnr
w/o color feature — w/o ellipse feature — w/o triangle feature — Final
28
26
24
22 /
20
18
Step
0 20 40 60 80

test/psnr

Dither with Img. Grad. Color Field = Final v

28

24
2

20 Step

test/psnr

wjo color feature wjo ellipse feature — w/o triangle feature — Final 5

28

26

24

22 !

20

18

16 Step

0 20 40 60 80

Figure 3. PSNR curves during training process.

We use image features as the default part and analyze the
effects of including or excluding color features, ellipse fea-
tures, and triangle features. The results show that ellipse
features are crucial for the final performance, while triangle
and color features have a smaller impact but still contribute
to faster convergence and improved training stability by pre-
venting local optima.

3.2. Additional Visualization Results

Due to space limitations in the main paper, we provide ad-
ditional rendering visualizations and comparisons here. We
randomly select several images from both the Kodak and
Div2k datasets.

In Fig. 4, we compare Gaussian representation initializa-
tion using our network (top row) and Gaussianlmage’s ran-
dom initialization strategy (bottom row). The visualization
includes the initial results, rendering outputs at the 2s mark
(including initialization time), and detailed comparisons.
From the visual results, our method produces high-quality
initialization, leading to superior rendering even before
fine-tuning. At the 2s mark, it achieves near-Ground-Truth
quality, demonstrating finer details compared to Gaussian-
Image.

In Fig. 5, we compare the output of our network-based
initialization at the 2s mark with the output of random ini-
tialization at 10s. From the detailed comparisons, it is
evident that our method achieves results at 2s that nearly
achieve or even surpass those obtained after 10s of training
with random initialization, further demonstrating the effi-

ciency of our approach.

References

[1] Andrew W Fitzgibbon, Robert B Fisher, et al. A buyer’s guide
to conic fitting. Citeseer, 1996. 2, 3

[2] Giorgia Franchini, Roberto Cavicchioli, and Jia Cheng Hu.
Stochastic floyd-steinberg dithering on gpu: image quality and
processing time improved. In 2019 Fifth International Con-
ference on Image Information Processing (ICIIP), pages 1-6,
2019. 4

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139-1, 2023. 1

[4] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang,
Dahua Lin, and Bo Dai. Scaffold-gs: Structured 3d gaussians
for view-adaptive rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20654-20664, 2024. 1

[5] Yunxiang Zhang, Alexandr Kuznetsov, Akshay Jindal, Ken-
neth Chen, Anton Sochenov, Anton Kaplanyan, and Qi Sun.
Image-gs: Content-adaptive image representation via 2d gaus-
sians. arXiv preprint arXiv:2407.01866, 2024. 1

Initialization 2s Detail Initialization 2s Detail

Kodim 05

Kodim 22

Kodim 24

Div2k 0821

Div2k 0828 Div2k 0834

Div2k 0855

Div2k 0845

Gl at 10s

Div2k 0826

»-

, Yo W
e e

Div2k 0848 Div2k 0896

Gl at 10s Gl at 10s

Figure 5. More visualization Results. Please zoom in for more details.

