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Supplementary Material

9. Proof and detailed analysis of Skip-Vision
In this section, we provide a theoretical analysis to justify
the rationale behind Skip-Vision and quantify the perfor-
mance loss introduced by skipping FFN computations for
redundant visual tokens.

9.1. Bounded error of Skip FFN
At the core of this analysis lies the layer error incurred when
bypassing the FFN layer. For a given layer l, the original
output h(l)

original is :

h
(l)
original = h

(l)
attn + FFN(l)(h(l)

attn). (14)

When skipping the FFN, the output becomes:

h
(l)
skip = h

(l)
attn. (15)

The per-layer skipping error is:

✏
(l) = kh(l)

original � h
(l)
skipk2 = kFFN(l)(h(l)

attn)k2. (16)

For redundant tokens, such as those in homogeneous image
regions, this error is negligible (✏(l) ⇡ 0) due to minimal
feature transformations by the FFN.

However, errors propagate through subsequent layers,
amplified by the recursive nature of transformer architec-
tures. Leveraging Lipschitz continuity assumptions for self-
attention and FFN operations (L(l+1)

attn and L
(l+1)
FFN ), the cu-

mulative error at layer l + 1 is bounded by:

✏
(l+1)  (L(l+1)

attn + L
(l+1)
FFN ) · ✏(l) + ✏

(l+1)
skip , (17)

where (✏(l+1)
skip represents new errors from skipping deeper

layers (l + 1).
Over L layers, the total error telescopes to:

✏total 
LX

l=1

✏
(l)
skip ·

L�lY

i=1

(L(i+1)
attn + L

(i+1)
FFN ). (18)

Theorem 9.1 Lipschitz Constants for Causal Attention
and FFN in Transformers Assume:
1. Inputs are normalized (e.g., via LayerNorm), bounding

intermediate feature norms.
2. Weight matrices in attention (WQ, WK , WV ) and FFN

(W1, W2) have bounded spectral norms (maximum sin-
gular values).

Then the Lipschitz constants of these components satisfy:

1. Causal Attention:

L(Attn)  kWQk2kWKk2kWV k2p
dk

, (19)

where dk is the key dimension. The causal mask further
restricts attention dependencies, preserving this bound.

2. Feed - Forward Network (FFN):

L(FFN)  kW1k2kW2k2, (20)

assuming the activation function (e.g., ReLU, GELU) is
1-Lipschitz.

Proof.
The Lipschitz constant of causal attention
1.Linear Transformation:
The input sequence X 2 Rn⇥d undergoes three linear

transformations to obtain the query Q = XWQ, the key
K = XWK , and the value V = XWV . The Lipschitz
constant of each linear transformation is the spectral norm
(the largest singular value) of its weight matrix, denoted as
�Q = kWQk2, �K = kWKk2, and �V = kWV k2 respec-
tively.

2.Attention Score Calculation:
The scaled dot - product S = QK

>
/
p
dk. The Lipschitz

constant of the bilinear mapping is related to �Q and �K . If
the norm of the input X is bounded (for example, through
LayerNorm), then:

Lip(S)  �Q�Kp
dk

. (21)

3. Softmax Activation:
After applying the causal mask, softmax is performed on

each row. The Lipschitz constant of Softmax under the `2

norm is less than 1, that is:

Lip(softmax)  1. (22)

4. Weighted Sum of Values: The output Attn(X) =
AV , where A = softmax(S). The Lipschitz constant of
this step is determined by the spectral norm �V of the linear
transformation of V .

Overall Lipschitz Constant
Combining the upper bounds of each step:

Lip(CausalAttention)  �Q�K�Vp
dk

. (23)

Impact of Causal Mask: The mask restricts the atten-
tion range, which may reduce the sensitivity to the input.



Therefore, the actual Lipschitz constant will not exceed the
above-mentioned upper bound.

The Lipschitz Constant of FFN
The FFN is usually expressed as:

FFN(x) = W2 · Activation(W1x+ b1) + b2, (24)

where the Lipschitz constant of activation functions (such
as ReLU, GELU) is 1.

Derivation of Lipschitz Constant
1. Linear Layer W1: The spectral norm is �1 = kW1k2.
2. Activation Function: Lip(Activation) = 1.
3. Linear Layer W2: The spectral norm is �2 = kW2k2.
Follow the equation 7 in [103], the overall Lipschitz

constant is the product of the spectral norms of the two lin-
ear layers:

Lip(FFN)  �1�2. (25)

⇤
Corollary 9.1 Bounded Lipschitz If WQ, WK , WV , W1,
W2 are orthogonal matrices (spectral norm = 1), then:
• L(attn)  1/

p
dk

• L(FFN)  1

If we assume Lipschitz constants Lattn + LFFN  � and
skipping errors ✏(l)skip  ✏, the total error is scaled to:

✏total  ✏ · �
L � 1

� � 1
, (26)

Theorem 5.1 establish that the skip error is bounded when
� < 1, provided the model is trained with modern regular-
ization techniques. This ensures that the Multimodal Large
Language Model (MLLM) remains less sensitive to the ef-
fects of skipping.

This error also impacts the KL divergence between the
original and skipped outputs, bounded by:

DKL(pskip k poriginal) 
1

2�2
· ✏2total, (27)

where �
2 is the variance of the logits.

Proof. For two Gaussian distributions p = N (µp,⌃p)
and q = N (µq,⌃q), their KL divergence is:

DKL(pkq)

=
1

2
(tr(⌃�1

q ⌃p) + (µq � µp)
T⌃�1

q (µq � µp)

� k + ln
|⌃q|
|⌃p|

) (28)

where k is the dimension. If we assume that the covariances
of the two distributions are the same, i.e., ⌃p = ⌃q = �

2
I ,

and the total difference in means is ✏total, then:

DKL(pkq) =
1

2�2
kµp � µqk2. (29)

Here, kµp � µqk2 is ✏2total, so:

DKL(pkq) 
1

2�2
✏
2
total. (30)

⇤
Further integrating feature similarity errors (✏sim =

O(
p
1� ✓)) from low-attention tokens, the final bound be-

comes:
DKL  1

2�2
· (✏total + ✏sim)

2
. (31)

Practically, this analysis motivates a layer-wise skipping
strategy, alongside token selection and token merge based
on feature similarity (✓).

10. More experimental results
10.1. Efficiency.
Following the LLaVA-1.5-7B training setup, we conducted
additional comparisons between Skip-Vision and several re-
cent works, as shown in the table 5. MMVet, MMStar and
MMBench highlight Skip-Vision’s strength in capturing
causal and global information. These benchmarks em-
phasize high-level reasoning and abstraction, which bene-
fit from Skip-Vision’s ability to preserve essential infor-
mation flow while reducing redundant computations. By
skipping FFN and KV-cache for less informative tokens, the
model amplifies signal from key visual cues and enhances
causal token interactions. While this comes with a slight
trade-off in fine-grained tasks (OCR, Textvqa), it reflects
a deliberate balance between perception and reasoning, fa-
voring tasks that rely on semantic integration over detail fi-
delity.

Method GQA MMB VQAText MMVet Avg.
Vanilla (576 tokens) 61.9 64.7 58.2 31.1 100%

SparseVLM [130] (64 tokens) 52.7 56.2 51.8 23.3 85.2%
VisionZip [115] (64 tokens) 55.1 60.1 55.5 31.7 93.7%
PDrop [111] (64 tokens) 47.5 58.8 50.6 - -
FasterVLM [127] (58 tokens) 54.9 60.6 55.3 30.1 93.1%
LLaVA-PruMerge [91] (32 tokens) - 60.9 56.0 - -
Skip-Vision (Nr = 64, Ns = 156) 60.8 65.1 57.4 32.5 100.0%

Table 5. Comparison with more methods
Under the cos setting, we conduct more experiments to

evaluate the training and inference efficiency. We compare
with methods: FastV [22], Victor [108] and mean average
pool, fine-tuning on LLaVA-665k using 8 NVIDIA A100
GPUs. As shown in Figure 11, our architecture outper-
forms in both metrics. Compared to the CoS1296 baseline,
it achieves comparable performance with 35% less training
time and 74% reduced inference computation. FastV, un-
able to utilize flash attention, shows a significant disadvan-
tage, even surpassing baseline training time.

10.2. Ablation study
To validate the effectiveness of each component within the
Skip-Vision framework, under CoS setting, we conducted



SF FS LS Merge LV SK MME Textvqa MMB MMVet MMMU MathV OCRB MMStar Overall
0 CoS1296 1585 64.4 77.1 39.4 39.2 21.5 39.2 41.2 46
1 X 1548 64.5 75.3 39.7 39.1 21.8 37.7 40.9 45.6
2 X 1589 63.6 74.4 36.9 38 19.8 365 39.8 44.2
3 X X 1591 63.7 74.9 39.4 38.7 20.7 36.3 39.9 44.8
4 X X 1560 63.8 75.5 39.0 39.2 21 37.1 40.0 45.0
5 X X X 1580 63.5 74.2 40.6 39.2 21.6 37.2 40.9 45.3
6 X X X 1570 63.5 74.1 40 39.8 20.1 39 41.4 45.4
7 X X X 1593 62.6 74.7 40.3 40.2 21.6 36.6 41.1 45.3
8 X X X X 1571 63.6 75.9 40.3 40.3 21 36.1 41.5 45.6
9 X X X X 1547 64.0 75.9 38 41.2 21.9 36.9 40.6 45.5

10 X X X X X 1562 63.9 76.5 40.2 40.2 21.2 37.2 41.9 45.9
11 X X X X X X 1563 63.7 76.5 41.7 40.3 21.2 37.0 41.9 46

Table 6. Ablation study. To establish a strong baseline, we performed an ablation study on each component of the Skip-Vision framework
with the LLAVA 665k SFT dataset. SF (skip FFN), FS (former summary token), LS (latter summary token), Merge (reducing local visual
tokens from 1024 to 256), LV (passing the last local visual token through the FFN), SK (using skip KV-cache during inference). This
analysis highlights the distinct contributions of each element to efficiency and performance.

Inference method Skip window size MME Textvqa MMB MMVet MMMU MathV OCRB MMStar Overall
Without skip KV-cache - 1562 63.9 76.5 40.2 40.2 21.2 37.2 41.9 45.9

Skip KV-cache middle+small 1562 61.8 76.5 32.6 40.4 21.2 22.6 41.9 42.4
Skip KV-cache small 1563 63.7 76.5 41.7 40.3 21.2 37.0 41.9 46

Table 7. Ablation study of skip KV-cache.We report skip KV-cache performance across different visual token window sizes. Skip-Vision
enables task-specific optimization by adjusting skip KV-cache levels for tailored acceleration.

Figure 9. Visualization of attention map in MME.

Figure 10. Visualization of attention map in TextVQA.

ablation and comparative experiments on the skip FFN,
summary token, token merge, last visual token, and skip
KV-cache. The detailed experimental results are presented
in the table 6.

The last summary token or final visual token must
pass through the FFN. As discussed in Section 4.2, the
final visual token plays a crucial role in predicting the sub-
sequent text token, thereby requiring access to the textual

knowledge encoded within the FFN layers. This integration
of information is essential. Compare (2, 3, 4, 5) in Table
6, employing a summary token as the final visual token has
demonstrated enhanced effectiveness compared to a stan-
dard visual token. Furthermore, our experimental findings
reveal that optimal performance is achieved when both the
summary token and the last local visual token are processed
through the FFN.

The former summary token enhances the model’s
comprehension of overall visual information. Compare
(4,6), (7,8), (9,10) in Table 6, the former summary to-
ken enhances the emphasis on crucial information by adap-
tively merging large-scale visual features. This approach
addresses the challenge posed by overly lengthy sequences
of visual tokens bypassing the FFN, which may result in the
omission of critical large-scale visual context.

The local token merge strategy seamlessly aligns with
the skip-vision framework. Compare (0,1), (4,7), (6,8)
in Table 6, when loacl token merge is directly applied to
the CoS1296 baseline, the model’s overall performance de-
clines, reflecting its dependency on redundant visual data
when all tokens pass through the FFN. In contrast, within
the skip-vision framework, merging local tokens results in
improved performance, indicating that our architecture ef-
ficiently leverages visual information without requiring ex-
cessive redundancy.

The skip KV-cache mechanism enables adaptive se-
lection of visual tokens to skip based on task-specific in-



Figure 11. Performance vs. Training-Time and Inference
FLOPs. Under the cos setting, we compare Skip-Vision with three
MLLM acceleration methods, showing clear advantages in train-
ing speed and inference efficiency under equivalent computational
constraints.

formation requirements. As demonstrated in Table 7, for
tasks such as MMB, MMU, and MMStar that do not ne-
cessitate fine-grained information, both middle and small
window-size visual tokens can be skipped, with only the ini-
tial and final summary tokens retained. For detail-sensitive
tasks like TextVQA and OCRBench, we skip only the small
window-size tokens that bypass the FFN, thereby preserv-
ing critical fine-grained details. Applying skip KV-cache
with small window-size tokens during inference improves
performance, particularly in tasks requiring extended re-
sponses, such as MMVet.

10.3. More visualizations

Figure 12. Visualization of attention map in MMBench.

Figure 13. Visualization of attention map in MMVet.

Figure 14. Visualization of attention map in MMMU.

Figure 15. Visualization of attention map in MathV.

Figure 16. Visualization of attention map in OCRBench.

Figure 17. Visualization of attention map in MMStar.

10.4. Dataset
In Table 8 and Table 9, we introduce the two scaling datasets
used by Skip-Vision during the SFT stage: SK-1M and SK-
9M.



Task Dataset

Visual Instruction Tuning LLaVA-665k [69], SVIT [132]

VQA CREPE [122],Imagenet multi task [89], VQA-rad [52]

Visual Reasoning Wikitable [51], Super-CLEVR [62], VSR [65]

Knowledge ViQuAE [55],Kvqa [90], Websrc [23]

Chart / Diagram / graph ChartQA [79],Iconqa [74], Infographicvqa [82],

Document DeepForm [98], TAT-QA [135], Visualmrc [99], Docvqa [81], Sujet-
Finance-QA-Vision-100k [97]

Math Mathverse [128]

OCR / Screen / Scene text TQA [50], HW-SQuAD [80], TextVQA [95], ST-VQA [8],TextOCR-
GPT4V [13], OCRbench-kv [71], Uber-text [129]

Science AI2D [49]

Table 8. Datasets used by SK-1M at the SFT stage.

Task Dataset

Visual Instruction Tuning SVIT [132], ALLaVA [18], ShareGPT4V [20], cog-vlm-sft [105]

Caption TextCaps [94], ShareGPT-4o [106]

VQA CREPE [122],Imagenet multi task [89], VQA-rad [52], VQAv2 [4],
Vizwiz [34]

Visual Reasoning Wikitable [51], Super-CLEVR [62], VSR [65], FigureQA [45], Tal-
lyQA [1], Visual cot [92], CLEVR [43], Raven [126]

Knowledge ViQuAE [55],Kvqa [90], Websrc [23], OK-VQA [78], Volcano [54],
RLAIF-V [120]

Chart / Diagram / graph ChartQA [79],Iconqa [74], Infographicvqa [82], MapQA [17], Tab-
Fact [110], Chart2Text [46], DVQA [44], Chartbench [113], MMC [66]

Document DeepForm [98], TAT-QA [135], Visualmrc [99], Docvqa [81], Sujet-
Finance-QA-Vision-100k [97], Docmatix [53], DocReason25K [37], Doc-
Struct4M [38]

Math Mathverse [128], MathOCR [16], MathV360K [93], GeoGPT4V [11],
Geo170K QA [31]

OCR / Screen / Scene text TQA [50], HW-SQuAD [80], TextVQA [95], ST-VQA [8],TextOCR-
GPT4V [13], OCRbench-kv [71], Uber-text [129], OCR-VQA [85],
ScreenQA [5], SynthText [33], ChromeWriting [109], K12 Printing [57],
SQuAD [87], ICDAR19-LSVT [48], ICPR18-MTWI [36], ICDAR19-
ArT [26], COCO-Text [102], Docscan [96], HierText [73]

Science AI2D [49], Plotqa [84], ArXivQA [59], ScienceQA [75]

Table 9. Datasets used by SK-9M at the SFT stage.


