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Supplementary Material

1. Additional Details and Ablations

1.1. Efficiency Comparison with Other Models
To assess efficiency, we compare YOLO-Count with other
object counting models in terms of backbone architecture,
parameter count, and inference speed, as summarized in
Tab. 1. For inference speed evaluation, we measure the
frames per second (FPS) of all models on a single NVIDIA
RTX 3090 GPU.

The results demonstrate that YOLO-Count achieves at
least a 5× speedup over other high-accuracy models, pri-
marily due to its lightweight YOLO-based backbone, which
avoids the computational overhead of heavy transformer-
based vision backbones such as GroundingDINO [6] and
CLIP [8]. This combination of high efficiency and strong
performance highlights YOLO-Count as a practical, plug-
and-play module for integrating accurate quantity control
into text-to-image (T2I) generation pipelines.

Table 1. Comparison of model architecture and efficiency.

Model #Params FPS Backbone

CountGD [2] 146M 4.93 SwinT
CLIP-Count [4] 101M 10.34 ViT
VLCounter [5] 103M 8.45 ViT
CounTX [1] 97M 9.98 SwinT
DAVE [7] 150M 2.37 SwinT
YOLO-Count (Ours) 68M 50.41 CNN

1.2. Token Optimization for T2I Control
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Figure 1. Pipeline for counting-controlled generation via token
optimization. (C∗ denotes the counting token.)

We adopt a token optimization strategy analogous to tex-
tual inversion. Following [10], we iteratively update the
learnable counting token embedding using gradients de-
rived from the discrepancy between the predicted and target

counts. This process progressively refines the token repre-
sentation, guiding the text-to-image (T2I) model to generate
images that match the desired object quantity, as illustrated
in Fig. 1. In practice, this optimization requires at most
150 gradient steps and can be executed on a single 32 GB
NVIDIA V100 GPU. Optimizing object count for a single
image takes approximately 40–180 seconds, depending on
the quantity of the target and the complexity of the image.

1.3. Categories for Controllable Generation Bench-
marks

• LargeGen: sea shell, apple, orange, marble, green pea,
bottle cap, peach, egg, chair, tree log.

• LargeGen-New: egg tart, mango, lemon, onion, gold
medal, beaker, harmonica, baozi, jellyfish, llama.
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Figure 2. Results of quantity control on LargeGen.

Figs. 2 and 3 shows additional qualitative results
of counting-controlled generation on the LargeGen and
LargeGen-New benchmarks, respectively, demonstrating
YOLO-Count’s ability to accurately guide object quantity
control across both seen and novel categories.

1.4. Effect of the Classification Branch During In-
ference

The standard inference procedure for YOLO-Count in-
volves summing the cardinality map, as used in all main
experiments. However, since YOLO-Count includes an ad-
ditional classification branch, which is originally designed



Figure 3. Results of quantity control on LargeGen-New.

to aid training, we explore using its classification output to
refine inference results.

During inference, we filter the cardinality regression out-
put ŷcnt using classification probabilities ŷcls. Specifically,
only grid cells with classification probabilities exceeding a
predefined threshold κ are considered valid for counting.
The final count is computed as:

Count =
∑
p∈P

ŷcnt(p), (1)

where P = {p | ŷcls(p) > κ} represents the set of grid
cells whose classification probability surpasses the thresh-
old κ. We evaluate counting accuracy across different κ
values on the FSC147 [9] and LVIS [3] datasets.

Figure 4. Counting MAE of FSC147 and LVIS under different
thresholds.

As shown in Fig. 4, the optimal κ differs by dataset:
κ = 0.0 achieves the lowest MAE on FSC147, whereas κ =
0.5 performs best on LVIS. This difference reflects dataset-
specific annotation protocols. FSC147 employs inclusive
labeling, counting any object partially matching the prompt,
favoring lower thresholds (κ = 0.0) to avoid missed detec-
tions. Conversely, LVIS provides precise multi-category an-
notations requiring stricter category separation, where mod-
erate thresholds (κ = 0.5) effectively filter visually similar
but incorrect categories.

Fig. 5 illustrates this effect in a color-based ball count-
ing task. Baseline models such as CountGD [2] and CLIP-
Count [4] indiscriminately count all colored balls. In con-
trast, YOLO-Count adapts based on κ: at κ = 0.0, it mir-
rors inclusive counting behavior, while at κ = 0.5, it se-
lectively counts only the target color by leveraging classifi-
cation filtering. This shows that κ serves as an inference-
time hyperparameter, allowing flexible adaptation to task
requirements, favoring lower thresholds for inclusive count-
ing (FSC147 style) and higher thresholds for strict categor-
ical discrimination (LVIS style).
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Figure 5. Demonstrations of YOLO-Count in distinguishing se-
mantically similar categories through classification thresholding.

2. Limitations and Future Work
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Figure 6. Common failure modes. Numbers below are counts.

Despite its strong performance, YOLO-Count exhibits
several limitations, as illustrated in Fig. 6. On the left,
the model suffers from incorrect counting, failing to de-
tect small or background objects such as birds in cluttered
scenes. On the right, token optimization fails to reduce
the object count toward the specified target, leading to un-
successful quantity control in challenging scenarios. Fur-
thermore, YOLO-Count’s design is inherently dependent
on the YOLO architecture, which, while efficient, restricts
its seamless integration with state-of-the-art text-to-image
(T2I) diffusion models.

Future work could address these limitations by exploring
Transformer-based or hybrid architectures to improve ro-
bustness in dense and fine-grained counting scenarios. Ad-
ditionally, incorporating joint optimization directly within
the diffusion process, rather than relying on post-hoc to-
ken optimization, may provide stronger and more stable sig-
nals for quantity control, enabling tighter coupling between
counting models and generative pipelines.
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