
A. Formulation of Diffusion Models
In this section, we introduce the formulation of diffusion models in Chen et al. [6], Karras et al. [32]. This definition covers

various diffusion models. Chen et al. [6] show that common models, such as Ho et al. [24], Song et al. [60], Karras et al. [32]

can be transformed to align with this definition.

Given x :“ x0 P r0, 1sD with a data distribution qpx0q, the forward diffusion process incrementally introduces Gaussian

noise to the data distribution, resulting in a continuous sequence of distributions tqpxtq :“ qtpxtquTt“1 by:

qpxtq “
ż
qpx0qqpxt|x0qdx0, (14)

where

qpxt|x0q “ N pxt;x0, σ
2
t Iq, i.e., xt “ x0 ` σtε, ε „ N p0, Iq

Typically, σt monotonically increases with t, establishing one-to-one mappings tpσq from σ to t and σptq from t to σ.

Additionally, σT is large enough that qpxT q is approximately an isotropic Gaussian distribution. Given p :“ pθ as the

parameterized reverse distribution with prior ppxT q “ N pxT ;0, σ
2
T Iq, the diffusion process used to synthesize real data is

defined as a Markov chain with learned Gaussian distributions [8, 24, 32, 60]:

ppx0:T q “ ppxT q
Tź

t“1

ppxt´1|xtq. (15)

In this work, we parameterize the reverse Gaussian distribution ppxt´1|xtq using a neural network hθpxt, tq as

ppxt´1|xtq “ N pxt´1;μθpxt, tq, σ
2
t pσ2

t`1 ´ σ2
t q

σ2
t`1

Iq, (16)

μθpxt, tq “ pσ2
t ´ σ2

t´1qhθpxt, σtq ` σ2
t´1xt

σ2
t

“ pσ2
t ´ σ2

t´1qpxt ´ σtεθpxt, σtqq ` σ2
t´1xt

σ2
t

. (17)

The parameter θ is usually trained by optimizing the evidence lower bound (ELBO) on the log likelihood [7, 32, 60]:

log ppx0q ě ´
Tÿ

t“1

Eε

“
wt}hθpxt, σtq ´ x0}22

‰` C1, (18)

where wt “ σt`1´σt

σ3
t`1

is the weight of the loss at time step t and C1 is a constant.

Chen et al. [6] show that common diffusion models can be transformed into this definition. For example, for DDPM [24]:

xt “ ?αtx`
?
1´ αtε,

can be transformed to:
1?
αt

xtloomoon
xt in our def.

“ x`
?
1´ αt?
αtlooomooon

σt in our def.

ε.

B. Proof of Theorem 4.1
Lemma B.1. (Optimal Diffusion Model on Discrete Set.) Given a probability distribution q on a discrete support D, the
optimal diffusion model h˚pxt, t, cq, i.e., the minimizer of diffusion training loss, is:

min
hpxt,t,cq

Eqpxt|xqqpx|cqr}hpxt, t, cq ´ x}22s “
ÿ
xPD

expp´ }xt´x}2
2σ2

t
` ln qpx|cqqř

x1PD expp´ }xt´x1}2
2σ2

t
` ln qpx1|cqqx “:

ÿ
xPD

sD,cpxqx. (19)

This can be interpreted as the conditional expectation of x given xt, where the coefficient sD,cpxq is the posterior distribution.

This coefficient sums to one, and is the softmax of the distance plus the logarithm of the prior.

Proof. Let L “ Eqpxt|xqqpx|cqr}hpxt, t, cq ´ x}22s. Taking the derivative and set to zero:

B
Bhpxt, t, cqEqpxt|xqqpx|cqr}hpxt, t, cq ´ x}22s “ 2Eqpxt|xqqpx|cqrhpxt, t, cq ´ xs “ 0.

We have: ÿ
x

qpxt|xqqpx|cqhpxt, t, cq “
ÿ
x

qpxt|xqqpx|cqxô qpxtqhpxt, t, cq “
ÿ
x

qpxt|xqqpx|cqx

Therefore, we have:

hpxt, t, cq “
ÿ
x

qpxt|xqqpx|cq
qpxtq x “

ÿ
x

qpxt|xqqpx|cqř
x1 qpxt|x1qqpx1|cqx

“
ÿ
x

1
p2πσ2

t qd{2 expp´
}xt´x}2

2σ2
t
qqpx|cqř

x1
1

p2πσ2
t qd{2 expp´

}xt´x1}2
2σ2

t
qqpx1|cqx

“
ÿ
x

expp´ }xt´x}2
2σ2

t
` log qpx|cqqř

x1 expp´ }xt´x1}2
2σ2

t
` log qpx1|cqqx

“:
ÿ
xPD

sD,cpxqx.

Lemma B.2. There always exists a target image xfinal P D, such that the posterior probability of this image is close to one:

1´ sD,cpxfinalq ď εs “ Op 1
α
expp´ 1

2σ2
t

qq.

Proof. Let x be the closed point in dataset from xt, i.e., minxPD }x´xt}2, and x2 be the second closest point. We have:

1´ sD,cpxq “ 1´
expp´ }xt´x}2

2σ2
t

` log qpx|cqqř
x1 expp´ }xt´x1}2

2σ2
t

` log qpx1|cqq
“ 1´ 1

1`ř
x1‰x expp }xt´x}2

2σ2
t

´ }xt´x1}2
2σ2

t
` log qpx1|cq ´ log qpx|cqq

ď 1´ 1

1` p|D| ´ 1qq expp }xt´x}2
2σ2

t
´ }xt´x2}2

2σ2
t

` logp1´ αq ´ logαq

“
p|D| ´ 1qq expp }xt´x}2

2σ2
t

´ }xt´x2}2
2σ2

t
` logp1´ αq ´ logαq

1` p|D| ´ 1qq expp }xt´x}2
2σ2

t
´ }xt´x2}2

2σ2
t

` logp1´ αq ´ logαq

Using asymptotics, we have:

1´ sD,cpxq ď Opp|D| ´ 1qq expp}xt ´ x}2
2σ2

t

´ }xt ´ x2}2
2σ2

t

` logp1´ αq ´ logαqq

“ Opexpp´}xt ´ x2}2 ´ }xt ´ x}2
2σ2

t

´ logαqq

“ Op 1
α
expp´ 1

2σ2
t

qq.

Lemma B.3. Let εs “ minx 1´ sD,cpxq, i.e., the largest probability in the posterior distribution. Let C “ maxx }x}2. We
have:

}hpxt, t, cq ´ hpxt, t, c
1q}22 ď 3εsC

2.

Proof.

}hpxt, t, cq ´ hpxt, t, c
1q}22 “ }

ÿ
x

sD,cpxqx´
ÿ
x

sD,c1pxqx}22 “ }
ÿ
x

rsD,cpxq ´ sD,c1pxqsx}22
ď

ÿ
x

|sD,cpxq ´ sD,c1pxq|max
x
}x}22 “

ÿ
x‰xfinal

|sD,cpxq ´ sD,c1pxq|C2 ` |sD,cpxfinalq ´ sD,c1pxfinalq|C2

ď
ÿ

x‰xfinal

|sD,cpxq|C2 `
ÿ

x‰xfinal

|sD,c1pxq|C2 ` εsC
2 ď 3εsC

2.

Combining Lemma B.3 and Lemma B.2, we can prove Theorem 4.1:

}hpxt, t, cq ´ hpxt, t, c
1q}22 ď Op3 1

α
expp´ 1

2σ2
t

qC2q “ Op 1
α
expp´ 1

2σ2
t

qq.

C. Details of Backdoor Attacks and Implementation
We provide the details of the backdoor methods used in the experiment, including the trigger types and backdoor target types in

Tab. 6. Note that only backdoor attacks with the target type “Entire image” align with the Trigger Dominance assumption. For

other backdoor attacks, where the Trigger Dominance assumption does not hold, existing backdoor detection methods [20, 68]

have only a very limited effect (refer to Tab. 1 and Tab. 2).

For RickBKDTPA
6, BadT2ITok

7, VillanBKDone
6, and VillanBKDmul

6, we directly use the publicly available model parameters.

For RickBKDTAA
8, BadT2ISent

9, EvilEdit10, and PersonalBKD11, we first train the backdoored models based on the experimental

settings and open-source code from their papers, and then evaluate the performance of detection methods.

Backdoor Attacks Trigger Trigger Type Backdoor Target Backdoor Target Type

RickBKDTPA o(U+0B66) multi-token An image depicting “A whale leaps out of the water” Entire Image

RickBKDTAA O(U+0B20) one-token Converting the image style to a “Rembrandt painting”. Image Style

BadT2ITok zu200b one-token An image patch Partial Image

BadT2ISent “I like this photo.” sentence An image patch Partial Image

VillanBKDone “kitty” one-token An image of “hacker” Entire Image

VillanBKDmul “mignneko” multi-token An image of “hacker” Entire Image

EvilEdit “beautiful cat” combined token Convert “cat” to “zebra” Object

PersonalBKD “* car” combined token Convert “cat” to “chow chow” Object

Table 6. The backdoor attacks used in this paper.

D. Experiments of Additional Datasets and Models
To further evaluate our method’s performance across various data distributions and various models, we inject backdoors into

the Stable Diffusion v1-5 [58] model and evaluate different detection methods using the Flickr [77] dataset (Tab. 7 and Tab. 8).

Note that since EvilEdit [66] and PersonalBKD [29] can only target specific objects in the text, we continue to use the data

6We use the published checkpoints in https://drive.google.com/file/d/1WEGJwhSWwST5jM-Cal6Z67Fc4JQKZKFb/view.
7We use the model released at https://huggingface.co/zsf/BadT2I_PixBackdoor_boya_u200b_2k_bsz16.
8We train backdoored models based on the release code: https://github.com/LukasStruppek/Rickrolling-the-Artist.
9We train backdoored models based on the release code: https://github.com/zhaisf/BadT2I.

10We train backdoored models based on the release code: https://github.com/haowang02/EvilEdit.
11We train backdoored models based on the release code: https://github.com/huggingface/notebooks/blob/main/diffusers/sd_

textual_inversion_training.ipynb.

Method RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg. Iter./Sample

T2IShieldFTT 98.8 55.5 59.0 54.5 80.0 87.8 64.1 54.6 69.3 50

T2IShieldCDA 96.8 73.0 62.8 50.9 87.0 99.5 68.0 57.3 74.4 50

UFID 66.8 44.7 47.8 53.4 84.7 94.5 67.3 44.5 63.0 200

NaviT2I 99.9 99.6 97.8 95.1 99.4 99.7 99.7 84.5 97.0 «10.3

Table 7. The performance (AUROC) against the mainstream T2I backdoor attacks on Flickr [77]. The experiment are conducted on

Stable Diffusion v1-5 [58]. We highlight key results as Tab. 1. Additionally, we list the required diffusion iterations to approximate the

computational overhead.

Method RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg. Iter./Sample

T2IShieldFTT 93.5 49.2 50.8 46.7 71.9 80.6 47.6 49.5 61.2 50

T2IShieldCDA 90.5 60.6 55.7 48.7 78.9 84.1 57.6 53.6 66.2 50

UFID 58.7 46.7 48.4 51.1 90.0 98.0 46.3 46.6 60.7 200

NaviT2I 87.1 83.3 89.9 86.4 97.1 98.0 93.5 70.9 88.3 «10.3

Table 8. The accuracy (ACC) of detection against the mainstream T2I backdoor attacks on Flickr [77]. The experiments are conducted on

Stable Diffusion v1-5 [58]. We highlight key results as Tab. 1. Since these values represent the ACC of a binary classification task, even

”random guessing” achieves an ACC of 50.0%. Note that the threshold used here is the same as in Tab. 2, which demonstrates that the

threshold computed in Eq. (9) based on our method can more effectively distinguish normal and poisoned samples across different data

distributions.

as Sec. 5 while replacing the model with Stable Diffusion v1-5 [58]. Note that we use the same detection threshold as in
Tab. 2, in order to demonstrate the generalizability of our detection threshold.
Effectiveness Evaluation. In Tab. 7 and Tab. 8, it can be observed that, our method also outperforms the baselines [20, 68]

similar to Tab. 1 and Tab. 8, especially for the non-”entire image” backdoors in Tab. 6. Compared to our method, the

performance of the baselines on more stealthy backdoors is nearly equivalent to random guessing.

Efficiency Evaluation. Similarly, to estimate computational overhead, we calculate the average non-stopword token length in

the Flickr [77] dataset, which is approximately 10.3. This indicates that our method remains more efficient than the baselines,

requiring only about 20% time-cost of T2IShield [68] and 5% time-cost of UFID [20].

E. Effects Under the More Advanced Adaptive Attack

Inspired by [76], we design a more advanced adaptive attack by adding a regularization term that enforces consistency

constraints on activation variation. We implement the adaptive attack using BadT2ITok and incorporate the regularization term

from Eq. (4):

LBadT2I Reg “ LBadT2I ` α ¨ δθ
`
c, c1

˘
, (20)

where c and c1 denote the benign input and the trigger-embedded input, respectively.

α No Reg 10´5 10´7 10´8 10´9 10´10

FID 13.0 64.7 (+397%) 16.8 (+29%) 15.0 (+15%) 13.2 13.1

ASR 0.98 0.50 0.38 0.42 1.00 1.00

FTR 0 0.42 0.24 0.13 0 0

AUC 97.0 N/A N/A 81.2 93.6 95.7

Table 9. The effectiveness of adaptive attacks against NaviT2I under various weights.

Including the original weight α of 250 in [76], we evaluate a set of α: r250, 1, 10´3, 10´5, 10´7, 10´8, 10´9, 10´10s. We

compute the FID of the backdoored model to assess its utility, ASR (Attack Success Rate) and FTR (False Triggering Rate) to

assess backdoor effectiveness, and AUC of NaviT2I. In Tab. 13, when α ě 10´5, the model collapses and outputs noise. At

α “ 10´7 or 10´8, the model triggers the backdoor randomly, indicating unsuccessful backdoor injection. For α ď 10´9, our

method achieves satisfactory performance. Hence, this adaptive attack is ineffective.

Backdoor RickBKDTPA BadT2ITok VillanBKDone EvilEdit Avg.

AUC
BadAct 81.6 2.0 97.4 62.0 60.7

NaviT2I 99.9 97.0 98.9 85.5 95.3 (+34.6)

ACC
BadAct 77.7 45.2 87.3 52.0 65.6

NaviT2I 91.2 91.4 94.5 71.7 87.2 (+21.6)

Table 10. The performance of BadAct against T2I backdoors.

F. Comparison with Other Related Works
F.1. Backdoor Defenses for Unconditional Diffusion Models
In experiments (Sec. 5.2), we consider all existing T2I backdoor defense methods for comparison: T2IShield [68] and UFID

[20]. There are also other backdoor defense methods [23, 43, 64, 67] targeting diffusion models. However, we do not include

them in our experiments because these methods are only applicable to unconditional diffusion models, and are not suitable

for text-to-image synthesis scenarios (i.e., conditional diffusion models). We select several works for discussion: Hao et al.

[23], Mo et al. [43], Truong and Le [64] focus on inverting backdoor triggers in unconditional diffusion models (e.g., DDPM),

where triggers are image distributions. In contrast, triggers in T2I diffusion models are textual tokens, making these methods

inapplicable. [67] is also inapplicable as it aims to invert the visual trigger.

F.2. Comparison with BadActs [76]
BadAct [76] is a similar work that utilizes neuron activations for backdoor defense on NLP classification models. Our work

differs from it in the following three aspects: � Methodologically, BadAct relies on activation values to detect outliers,

whereas we apply token masking and calculate the activation variations to make judgments. � Theoretically, BadAct does not

involve the concept of diffusion. In contrast, we conduct a theoretical analysis to significantly improve detection efficiency.

� Experimentally, BadAct is evaluated only on NLP models without T2I tasks. So we evaluate it on T2I backdoors. In

Tab. 10, NaviT2I generally outperforms BadAct. Specifically, BadAct produces predictions opposite to the gold-labels for

BadT2ITok inputs (similar observation in Appendix G.1). This is because the activation distribution of BadT2ITok samples is

more concentrated than that of clean inputs, causing BadAct to fail.

G. Ablation Studies
G.1. From Neuron Coverage to Neuron Activation Variation
Note that although we find that the NC value of trigger tokens differs from other tokens on an average scale, Neuron Coverage

value [45] is too coarse-grained to be directly used for detecting backdoored samples. We design the following ablation

experiment to validate this point. � We directly use the NC value of the input sample (a percentage value) as an indicator to

determine whether it is a poisoned sample. � We mask each token in the input sample and compute the maximum change in

NC value as an indicator to determine whether it is a poisoned sample. We report the AUROC value of detection in Tab. 11.

We find that neither of the above methods achieves results as satisfactory as our approach, demonstrating that the layer-wise

computation, “neuron activation variation”, designed in Sec. 4.2 plays a crucial role.

Method RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg.

Neuron Coverage 64.9 54.4 31.9 35.0 62.0 82.9 45.6 59.5 54.5

NC Variation 91.5 71.6 64.8 71.5 84.4 56.5 65.8 62.8 71.1

NaviT2I 99.9 99.8 97.0 89.7 98.9 99.9 99.8 85.5 96.3

Table 11. We compare the detection performance (AUROC) when using Neuron Coverage [45] instead of calculating “Neuron Activation

Variation” (Sec. 4.2). Notably, the “Neuron Coverage” method even produces an opposite AUROC value against the BadT2I [80] backdoors.

This is because some backdoored samples increase the model’s NC, while others decrease it.

G.2. Selection of Layers
In the UNet model, the architecture is divided into three DownBlocks (DownBlk), one MidBlock (MidBlk), and three UpBlocks

(UpBlk) based on resolution [14, 58], with each block containing attention layers, convolutional layers, and other linear layers.

Layer Selection VillanBKDmul BadT2ITok EvilEdit Avg.

DownBlk 99.9 75.9 88.3 88.0

MidBlk 99.9 96.6 76.3 90.9

UpBlk 99.9 96.7 84.5 93.7

Attention-layers 99.9 94.8 87.2 94.0

Conv-layers 99.9 97.9 82.6 93.5

All layers 99.9 97.0 85.5 94.1

Table 12. Detection performance (AUROC) across different layer selections.

We report ablation experiments for different layer selections within Lset. In Tab. 12, we find that our method exhibits reduced

sensitivity to certain backdoors (in light red) when using only the DownBlock and MidBlock. In contrast, utilizing all layers

achieves the best overall performance. So we adopt this setting in Eq. (4).

G.3. Selection of Iteration Steps

Figure 4. Detection effectiveness at various generation steps.

We evaluate the detection performance with different values of generating timestamps (Titer “ 50), and report the AUROC

values in Fig. 4. We observe that as the timestamp increases, the AUROC value gradually decreases, which aligns with the

Early-step Activation Variation phenomenon in Fig. 1.

G.4. Hyperparameter for Score Function in Eq. (7)

In Eq. (7), we exclude elements above the 75th percentile and compute the average value. This approach aims to eliminate

outlier values, which may be related to trigger tokens, while the remaining elements are more likely to represent normal

token values. Here, we analyze the impact of different percentile choices on the detection results. We conduct additional

ablation experiments to analyze the impact of different percentile parameters: � “Mean” – We directly compute the mean

without excluding outliers. � “ExMax” – We compute the mean of all elements except the maximum value. � “75th” - We

exclude elements above the 75th percentile and compute the mean. � “50th” - We exclude elements above the 50th percentile

and compute the mean. We report the AUROC values of different methods in Tab. 13. The experimental results show that

different parameter choices have only a minor impact on the performance, which demonstrates the robustness of our method to

hyperparameter selection. We adopt the 75th percentile in Eq. (7) because it exhibits a slight advantage over other parameter

choices.

G.5. Hyperparameter for Threshold in Eq. (9)

We select different values for m in Eq. (9) and report the detection performance (ACC) of our method in Tab. 14. Since Eq. (9)

essentially characterizes the boundary for outlier data within clean samples, a larger m tends to classify more samples as clean

data, while a smaller m tends to classify more samples as poisoned data. According to the results in Tab. 14, the optimal

classification performance is achieved when m is set to 1.2.

Percentile RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg.

Mean 99.7 99.7 96.8 88.7 98.8 99.9 99.8 84.8 96.02

ExMax 100.0 99.8 97.3 88.8 98.8 99.9 99.9 84.8 96.15

75th 99.9 99.8 97.0 89.7 98.9 99.9 99.8 85.5 96.31
50th 99.0 99.9 96.6 90.2 99.1 99.9 99.9 85.3 96.24

Table 13. The performance (AUROC) of different percentile choices in Eq. (7). The experiments demonstrate the robustness of our method

to hyperparameter selection.

Value of m in Eq. (9) RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg.

m=1.1 89.8 90.5 90.9 80.4 95.2 98.3 95.6 73.0 89.21

m=1.2 91.2 91.8 91.4 79.2 94.5 98.9 95.6 71.7 89.29
m=1.3 92.3 92.7 90.7 78.3 94.1 99.0 93.5 70.6 88.90

m=1.5 93.5 94.8 90..4 76.0 93.3 99.0 92.8 66.8 77.03

Table 14. The performance (ACC) of different values of m in Eq. (9).

H. Another view of Theorem 4.1
In this section, we provide another view of Theorem 4.1. In Theorem 4.1, we bound the error ε by some function of α and σt.

In this section, we would provide another dual theorem, which shows that for any error ε, there always exists a critical point t˚,

such that for any t ă t˚, the prediction of diffusion model under different conditions is ε-similar.

Theorem H.1. Assume the diffusion model is well-trained, i.e., achieving the minimal Er}εpxt, t, cq ´ ε}2s on some discrete
distribution. As long as ppc|xq is not strictly 1 or 0, i.e., there exists α ą 0 such that α ď ppx|cq ď 1´ α for any input x, two
different condition c, c1, then, for any error ε, there always exists a critical point t˚, such that for any t ă t˚, the prediction of
diffusion model under different condition are ε-similar:

}εpxt, t, cq ´ εpxt, t, c
1q}2 ď ε,

where σt˚ “ Op
b

1
´ lnαε q and c1 is another condition embedding from text p1: c1 “ T pp1q.

Note that 1
´ lnαε is a much slower decay rate than any polynomial rate 1

polypε,αq . This indicates that the diffusion model’s

different predictions would quickly become extremely similar. This is aligned with the empirical observation that the cosine

similarity between the prediction of diffusion models becomes more than 0.9999 even after just 8 sampling steps.

Lemma H.2. There always exists a target image xfinal P D, such that for any error εs, there always exists a critical point t˚,
such that for any t ă t˚, we have sD,cpxfinalq ą 1´ εs.

This lemma indicates that, when the sampling process proceeds, the posterior distribution gradually becomes a Dirac

distribution, converging to one point in the training set.

Proof. Let x be the closed point in dataset from xt, i.e., minxPD }x´ xt}2, and x2 be the second closest point.

sD,cpxq ě 1´ εs ô
expp´ }xt´x}2

2σ2
t

` log qpx|cqqř
x1 expp´ }xt´x1}2

2σ2
t

` log qpx1|cqq ě 1´ εs

ô 1

1`ř
x1‰x expp }xt´x}2

2σ2
t

´ }xt´x1}2
2σ2

t
` log qpx1|cq ´ log qpx|cqq ě 1´ εs

ô
ÿ

x1‰x

expp}xt ´ x}2
2σ2

t

´ }xt ´ x1}2
2σ2

t

` log qpx1|cq ´ log qpx|cqq ď εs
1´ εs

.

This can be relaxed to:

p|D| ´ 1q expp}xt ´ x}2
2σ2

t

´ }xt ´ x2}2
2σ2

t

` log qpx2|cq ´ log qpx|cqq ď εs
1´ εs

.

As long as ppc|xq is not strictly 1 or 0, i.e., there exists an α such that 0 ă α ď ppx|cq ď 1´ α ă 1, we can further relax to:

p|D| ´ 1q expp}xt ´ x}2
2σ2

t

´ }xt ´ x2}2
2σ2

t

` logp1´ αq ´ logα ď εs
1´ εs

ô}xt ´ x}2 ´ }xt ´ x2}2
2σ2

t

ď log
εs

pD ´ 1qp1´ εq ` log
α

p1´ αq “ Oplogαεsq.

Therefore, if we want sD,cpxfinalq ą 1´ εs, we can get the condition for σ2
t :

σ2
t ď Op 1

logαεs
q ô σt ď Op

c
1

logαεs
q.

Therefore, by Lemma B.3, to let }hpxt, t, cq ´ hpxt, t, c
1q}22 ď ε, we require 3εsC

2 ď ε, that is εs ď ε
3C2 . We can get the

requirement for σt:

σt ď Op
d

1

logα ε
3C2

q “ Op
c

1

logαε
q.

