
AHCPTQ: Accurate and Hardware-Compatible Post-Training Quantization
for Segment Anything Model

Supplementary Material

A. Analysis of Inter-Channel Variation and
Inter-Sample Similarity in SAM Model

In this section, we provide an in-depth analysis of inter-
channel variation and inter-sample similarity using the
SAM-B model with YOLOX as the prompt detector. We
extract the quantization ranges for channel indices 50 to
100 to examine channel-wise variation across multiple lay-
ers where CAG is applied. Additionally, we determine the
optimal scale and zero point for each channel using different
samples to assess parameter consistency across 100 sam-
ples.

In the image encoder, Figs. 7a and 8a show that QKV
projection and Linear-1 activations in the MLP block ex-
hibit channel-wise variation due to LayerNorm operations.

56 63 70 77 84 91 98
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
an

g
e

 Encoder: QKV Projection

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 100 200 300 400 500 600 700

0.8

0.9

1.0

 Inter-Sample Similarity

C
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.937

(b) Cosine similarity across 100 samples for each channel.

Figure 7. Range distribution and cosine similarity of QKV projec-
tion activations in the image encoder.

In the mask decoder, channel-wise variation in certain
layers poses a major challenge for low-bit quantization.
In Token-to-Image cross-attention, linear projection activa-
tions in the Query and Value projections serve as the pri-
mary challenges, as shown in Fig. Figs. 1b and 9a. No-
tably, activation outliers in the Query projection extend the
quantization range to approximately 400, severely increas-
ing quantization error under per-tensor quantization.

In Image-to-Token cross-attention, linear projection acti-
vations in the Key and Value projections exhibit distribution
variations that degrade SAM’s performance. As shown in

56 63 70 77 84 91 98
−8

−6

−4

−2

0

2

4

6

8

R
an

g
e

 Encoder: MLP Linear-1

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 100 200 300 400 500 600 700

0.8

0.9

1.0

 Inter-Sample Similarity

C
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.954

(b) Cosine similarity across 100 samples for each channel.

Figure 8. Range distribution and cosine similarity of Linear-1 ac-
tivations in the MLP block of the image encoder.

56 63 70 77 84 91 98

−200

−150

−100
−50

0
50

100
150

200

R
an

g
e

 Decoder: Token-to-Image Q Projection

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 50 100 150 200 250

0.8

0.9

1.0

 Inter-Sample Similarity

C
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.937

(b) Cosine similarity across 100 samples for each channel.

Figure 9. Range distribution and cosine similarity of pre-
projection activations for Token-to-Image Query in the mask de-
coder.

Figs. 10a and 11a, Key activations remain relatively stable,
whereas Value activations demonstrate higher variance.

Lastly, the range distribution of Linear-1 activations in
the MLP block of the mask decoder is shown in Fig. 12a.



56 63 70 77 84 91 98
−8

−6

−4

−2

0

2

4

6

8
R

an
g

e

 Decoder: Image-to-Token K Projection

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 50 100 150 200 250

0.8

0.9

1.0

 Inter-Sample Similarity

C
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.955

(b) Cosine similarity across 100 samples for each channel.

Figure 10. Range distribution and cosine similarity of pre-
projection activations for Image-to-Token Key in the mask de-
coder.

56 63 70 77 84 91 98
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7

R
an

g
e

 Decoder: Image-to-Token V Projection

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 50 100 150 200 250

0.8

0.9

1.0

 Inter-Sample SimilarityC
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.854

(b) Cosine similarity across 100 samples for each channel.

Figure 11. Range distribution and cosine similarity of pre-
projection activations for Image-to-Token Value in the mask de-
coder.

Fortunately, we verified that in all layers exhibiting se-
vere channel-wise variation, the optimal quantization pa-
rameters remain stable across different samples. As shown
in Figs. 3, 7b, 8b, 9b, 10b, 11b and 12b, the normalized
cosine similarity scores remain consistently high across
most channels. Therefore, the CAG-based grouping strat-
egy proves to be a highly reliable approach for enhancing
SAM’s quantization performance.

56 63 70 77 84 91 98
−0.10
−0.08
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06
0.08
0.10

R
an

g
e

 Decoder: MLP Linear-1

Channel Index

(a) Range distribution for channel indices 50 to 100.

0 50 100 150 200 250

0.8

0.9

1.0

 Inter-Sample Similarity

C
o

s
in

e
 S

im
ila

ri
ty

Channel Index

Avg. Similarity Across Tensor = 0.904

(b) Cosine similarity across 100 samples for each channel.

Figure 12. Range distribution and cosine similarity of Linear-1
activations in the MLP block of the mask decoder.

B. Hardware Cost Benchmark Across Differ-
ent Quantization Granularity

To benchmark the hardware cost associated with different
quantization granularities, we analyze the implementation
overhead of the SAM-H model under three configurations:
per-tensor quantization, per-channel quantization, and CAG
in AHCPTQ. Deep learning accelerators typically handle
quantization parameters in two ways:

(1) Storing scales and zero points in on-chip registers.
This approach completely eliminates data transfer between
the off-chip DRAM and the accelerator, ensuring zero trans-
mission latency and cost. However, it increases area and
resource overhead due to the large number of registers re-
quired.

(2) Storing scales and zero points in off-chip DRAM.
This method reduces the on-chip resource overhead but in-
curs substantial energy and latency costs due to frequent
DRAM accesses [10].

As illustrated in Fig. 4, any combination between these
two approaches follows a trade-off curve—reducing one
overhead inevitably increases the other. To mitigate this
trade-off, we propose CAG, which clusters quantization pa-
rameters to significantly reduce their count. By grouping
scale and zero-point values into just four clusters, CAG
reduces the required registers in (1) by 99.7% or the data
transfer cost in (2) by 99.7%. This approach enables hard-
ware efficiency close to per-tensor quantization while main-
taining accuracy comparable to per-channel quantization.
Since only 144 registers are needed to store four groups of
scale and zero points in 4-bit quantization, we opt to store
them on-chip, ensuring a more efficient and simplified hard-



ware design.

C. Hardware Implementation Details
Our AHCPTQ approach is implemented on an FPGA, with
a custom accelerator designed to validate the quantization
strategy. Fig. 13a depicts the validation system, which
includes a host PC for data transfer via Ethernet, DDR4
DRAM for data buffering, and a Xilinx Artix UltraScale+
FPGA configured with the accelerator. The general ar-
chitecture of the accelerator, shown in Fig. 13b, incorpo-
rates four groups of buffers that leverage on-chip BRAM
resources. These buffers temporarily store input activa-
tions, model weights, and output activations before and af-
ter quantization. The accelerator supports two configura-
tions of PEs: (1) an 8-input integer multiplier-and-adder
PE for uniform quantization, where both inputs and out-
puts are integers and partial sums are updated using an ac-
cumulator, and (2) an 8-input decimal bit-shift-and-adder
PE for log2 quantization, with integer inputs, decimal out-
puts, and a decimal accumulator for partial sums. In our 4-
bit AHCPTQ implementation, the accelerator uses 64 lanes
for multiplier and bit-shift PEs. To enable HLUQ, weights
and activations must be dynamically allocated to their cor-
responding PEs. This allocation logic is embedded in the
controller, which indexes the MSBs of activations. When
data is read from the IA buffer, weights and activations are
automatically distributed to the corresponding PE types.

After completing the integer and decimal inner product
operations, the output values are transferred to the quantiza-
tion processor in the FP32 domain. A small set of quantiza-
tion parameter registers loads the scales required for the cur-
rent and next layers, switching addresses to provide these
scales to the quantization processor. The output activations
are then fed into the dequantization unit, where, if HLUQ is
applied, the uniform and log2 branches are merged. Subse-
quently, the activations pass through the activation functions
and quantization units, ensuring the resulting integer values
can be directly used by the next layer. Finally, the activa-
tions are sent to the output buffer. The dequantization, acti-
vation function, and quantization processes are designed in
a pipeline to minimize latency, which is critical for HLUQ
deployment in practical applications.

Weights are grouped offline and reordered based on
group indices, while activations are reordered on-the-fly.
At the start of layer computation, the accelerator accesses
the DRAM to transfer weights and activations to the weight
and IA buffers. Simultaneously, the quantization processor
loads the quantization parameters required for quantization
and dequantization. The controller then dispatches paired
weights and activations to the appropriate PE lanes based
on the MSB of the activations. For instance, with β = 1

2 as
described in Sec. 3.3.1, activations with an MSB of ’1’ are
routed to multiplier PE lanes, while those with an MSB of

PC Host

E
th

e
rn

e
t

DDR4

FPGA

Accelerator

(a) Evaluation system.

DRAM

<<

<<

<<

<<

×8

×8

P
ro

c
e

s
s

in
g

 C
o

re

Multiplier PE Lanes

Bit-Shift PE Lanes

W
e

ig
h

t 
B

u
ff

e
r

IA
 B

u
ff

e
r

C
o

n
tr

o
ll
e

r

MSB Index

MSB Index

Quantization &

Reorder Buffer

Output Buffer

P
ip

e
li

n
e

 P
ro

c
e

s
s

in
g

Q
u

a
n

t 
P

a
ra

m

R
e
g

is
te

rs
F

P
3

2
 P

ro
c

e
s

s
in

g

DeQuantization

Arithmetic

Activation

Functions

Quantization

Arithmetic

(b) Accelerator architecture.

Figure 13. Overview of the evaluation system and the accelerator
architecture for the AHCPTQ configuration.

’0’ are sent to bit-shift PE lanes. Once computation is com-
pleted, the results stored in the accumulators are clustered
into two categories and passed to their respective uniform
or log2 dequantization units. The dequantized FP32 activa-
tions are then written back to the quantization buffer using
a tailored addressing logic to restore their default sequence.
Following this, the activations undergo the activation func-
tion and quantization for the next layer before being sent to
the output buffer and ultimately recycled back to DRAM.
To streamline the process, the reorder logic is fused into the
DRAM controller, which writes activations to grouped ad-
dresses in DRAM when CAG is applied to the next layer.

We implemented the RTL of the accelerator, Ethernet
interface, and DRAM controller in Verilog, synthesized
the design using Vivado Design Suite, and deployed it on
the ALINX AXAU15 development board. As illustrated
in Fig. 14, weights and activations are stored in on-board
DDR4 DRAM and transferred via Ethernet from the host
PC. The accelerator operates at 200 MHz to assess speedup
and energy efficiency. For comparison, we implemented
two baseline accelerators alongside our AHCPTQ config-



PC Host

ALINX AXAU15 Dev. Board

LAN Cable

Figure 14. FPGA validation environment.

uration: (1) a standard FP32 implementation, (2) a default
INT8 implementation. In all designs, floating-point opera-
tions such as quantization and dequantization are handled
by an IP generator utilizing on-chip DSP resources. The
detailed experimental results are presented in Sec. 4.4.

D. Experiment on Vision Transformers
To ensure that AHCPTQ generalizes to other vision models
and tasks, we evaluate its effectiveness on ImageNet for im-
age classification using DeiT. We integrate AHCPTQ into
I&S-ViT [47], the latest state-of-the-art PTQ framework, by
replacing its original post-GELU quantizer with HLUQ.

Table 4. Comparison of W4A4 PTQ methods on DeiT based on
image classification accuracy on the ImageNet dataset.

Method Opti. DeiT-T DeiT-S DeiT-B

FQ-ViT [23] × 0.10 0.10 0.10
PTQ4ViT [41] × 36.96 34.08 64.39
APQ-ViT [4] × 47.94 43.55 67.48
BRECQ [17] ✓ 55.63 63.73 72.31
QDrop [39] ✓ 61.93 68.27 72.60

PD-Quant [24] ✓ 62.46 71.21 73.76
RepQ-ViT [21] × 57.43 69.03 75.61
I&S-ViT [47] ✓ 65.21 75.81 79.97

AHCPTQ ✓ 66.11 76.12 80.07

In vision transformers (ViTs), inter-channel variation
can be effectively addressed by reparameterizing Layer-
Norm’s weight and bias, as LayerNorm consistently pre-
cedes the QKV linear projection. Consequently, we follow
the settings of RepQ-ViT [21] and I&S-ViT [47], applying
reparameterization to reduce inter-channel variance, mak-
ing CAG unnecessary in this case. However, in SAM’s de-

coder, the LayerNorm placement differs significantly from
ViT’s image encoder, making efficient reparameterization
infeasible. This fundamental difference motivated the in-
troduction of CAG as a dedicated PTQ solution for SAM
with high hardware efficiency.

We perform PTQ on DeiT-T, DeiT-S, and DeiT-B,
comparing AHCPTQ against static PTQ methods (FQ-
ViT [23], PTQ4ViT [41], APQ-ViT [4], RepQ-ViT [21])
and optimization-based PTQ methods (BRECQ [17],
QDrop [39], PD-Quant [24], I&S-ViT [47]). As shown in
Table 4, AHCPTQ achieves the highest classification accu-
racy in W4A4 quantization, surpassing all competing meth-
ods.

E. Parameter Sensitivity Analysis

To initialize b̂, s1, and s2 for subsequent optimization in
HLUQ, we perform a grid search over two parameters, α
and β. We extend the search to α ∈ {0.1, 0.2, . . . , 0.9} and
β ∈ { 18 ,

1
4 , . . . ,

7
8} on SAM-B with YOLOX. The resulting

W4A4/W5A5/W6A6 mAP scores of 13.1/32.0/35.3 align
with the reported values as shown in Table 5, indicating that
quantization performance is empirically insensitive to these
parameters and a limited subset suffices.

Table 5. Parameter sensitivity analysis on SAM-B with YOLOX.

Method W4A4 W5A6 W6A6

Default 13.4 31.8 35.4
Extended Search 13.1 32.0 35.3

F. Generalizing CAG to Weight Grouping

To ensure a fair comparison with existing baselines, we ap-
ply per-channel quantization to model weights. However,
CAG can also be extended to weight quantization, poten-
tially broadening its applicability. To evaluate this, we ap-
ply CAG with 32 groups to all model weights on SAM-
B with YOLOX. The resulting quantization performance is
comparable to the per-channel baseline as shown in Table 6,
demonstrating CAG’s generalizability to model weights.

Table 6. Performance analysis of applying CAG with 32 groups to
the model weights of SAM-B using YOLOX.

Method W4A4 W5A6 W6A6

Default 13.4 31.8 35.4
+ Weight Grouping 12.3 30.8 34.3



Floating-Point BRECQ QDrop PTQ4SAM AHCPTQ

Figure 15. Qualitative comparison of segmentation masks generated by different quantization methods on SAM-B with YOLOX. Our
AHCPTQ closely matches the floating-point reference, significantly outperforming other baselines.

G. Comparison of Visualization Results
We further provide visualization results on W4A4 quan-
tization of SAM-H using YOLOX, comparing AHCPTQ
with existing quantization methods, including BRECQ [17],
QDrop [39], and PTQ4SAM [29], as illustrated in Fig. 15.
Qualitatively, our AHCPTQ consistently generates segmen-
tation masks closely resembling those obtained from the
original floating-point model, preserving finer structural
details and accurate object boundaries. In contrast, the
masks produced by other PTQ methods exhibit notable
degradations. For instance, QDrop and PTQ4SAM often
fail to capture intricate object contours, resulting in coarse
segmentation masks and inaccurate boundary delineations.
BRECQ, while generally performing better than QDrop and
PTQ4SAM, still experiences noticeable detail loss and frag-
mented segmentation in complex regions. Overall, the vi-
sualization outcomes clearly demonstrate that AHCPTQ ef-
fectively addresses the quantization challenges inherent in
SAM, providing superior segmentation quality comparable
to the floating-point baseline, thus confirming its effective-
ness and robustness in practical low-bit deployment scenar-
ios.


	Analysis of Inter-Channel Variation and Inter-Sample Similarity in SAM Model
	Hardware Cost Benchmark Across Different Quantization Granularity
	Hardware Implementation Details
	Experiment on Vision Transformers
	Parameter Sensitivity Analysis
	Generalizing CAG to Weight Grouping
	Comparison of Visualization Results

