
ICCV
#1270

ICCV
#1270

ICCV 2025 Submission #1270. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A Plug-and-Play Physical Motion Restoration Approach
for In-the-Wild High-Difficulty Motions

Supplementary Material

MCM TTA Mask Prior WA-MJE ↓ RTE ↓ MPJPE ↓ MPS ↑

155.517 7.279 116.183 0.732
✓ 149.081 7.292 113.580 0.742
✓ ✓ 129.736 5.049 98.246 0.765
✓ ✓ ✓ 131.872 5.213 93.896 0.806
✓ ✓ ✓ ✓ 123.365 4.850 94.037 0.806

Table 1. Additional Ablation Study on AIST++.

1. Additional Experimental Results001

Additional Ablation Study for Motion Restoration. To002
further exemplify the effectiveness of the various parts of003
our approach in more general scenarios, we performed abla-004
tion experiments on the AIST++ dataset. As shown in Table005
1, all parts of our method show beneficial effects. The test-006
time adaptation strategy and the prior motion enhanced var-007
ious metrics, especially the globally relevant WA-MPJPE008
and RTE. Meanwhile, the role of Mask guidance in the009
adaptation process is mainly manifested in the MPJPE and010
MPS metrics in the camera coordinate system. In addi-011
tion, although there are relatively few difficult motions in012
the AIST++ dataset, our MCM still reflects a positive role013
in motion restoration.014

Physical transfer ability (Motion tracking ability).015
We conduct experiments on three datasets, AIST++, H36M,016
and kungfu, to verify the effectiveness of PTM on the mo-017
tion tracking task; the results are presented in Table 2. On018
all three datasets, our PTM outperforms current mainstream019
reinforcement learning methods. The improvement in met-020
rics is attributed to our proposed pre-training and adaptation021
design tailored for complex motions and the ability of mo-022
tion prior to mitigate the forgetting phenomenon and overfit023
issues. Previous studies have indicated that motion imita-024
tion can suffer from a rapid loss of earlier knowledge when025
attempting to imitate newer motions [7]. In our PTM, the026
motion prior and the pre-trained controller serve as a corner-027
stone for learning new actions, allowing the optimization of028
specific data samples with respect to human motion patterns029
it learned before. We aim for the model to proactively ex-030
plore solutions rather than merely reproducing answers it031
has memorized.032

2. Additional Visualization033

Flaw Motion Cases. In Figure 1, we provide additional034
cases of flawed motion shown in the advanced video mo-035
tion capture method GVHMR [11], flawed motion usually036
happens from the rapid and extreme movement of high-037
difficulty motions and the blurred frames. Our method038

Datasets Method SR ↑ Eg mpjpe ↓ Empjpe ↓ Epa mpjpe ↓ Eacc ↓ Evel ↓

AIST++
UHC 47.34% 147.5 67.83 49.42 5.59 7.76
PHC+ 69.85% 93.17 51.92 46.6 3.05 4.16
PTM 94.43% 62.28 31.68 29.73 2.59 3.41

H36M
UHC 23.6% 133.14 67.4 52.91 14.9 17.2
PHC+ 92.9% 50.31 33.34 30.34 3.74 5.52
PTM 98.84% 44.73 30.82 24.65 2.06 3.12

kungfu
UHC 42.91% 86.23 48.91 39.73 12.11 9.57
PHC+ 76.41% 84.86 47.98 39.43 5.54 7.89
PTM 98.16% 72.13 33.45 26.12 3.95 4.23

Table 2. Physical transfer ability.

successfully corrected these flawed motions and converted 039
them to physical realism motions. 040

Physical Restoration Visualization. In Figure 2, we 041
select high-difficulty in-the-wild motions (taekwondo and 042
rhythmic gymnastics) and illustrate a comparison before 043
and after our restoration. As shown in the figure, our 044
method effectively eliminates issues of ground penetration 045
and floating in the original motions, successfully transfer- 046
ring the raw movements into physical space. Despite the 047
original motions containing multiple continuous complex 048
actions that are challenging to reproduce in physical space, 049
our method effectively eliminates issues of ground pene- 050
tration and floating in the original motions while success- 051
fully maintaining the original motion patterns. Notably, our 052
method has never seen taekwondo or rhythmic gymnastics 053
motions before, which underscores the strong generaliza- 054
tion ability of our method. 055

Physical Restoration for Motion Generated by 056
Text2motion Method. In Figure 3, although the state-of- 057
the-art motion generation method Momask still generates 058
motion with physical inaccuracies such as mold penetration 059
and levitation, our method successfully repairs the physical 060
realism of the generated results while maintaining motion 061
quality comparable to that of the original generated results. 062

Visualization of different motion types. In Figures 063
4 and 5, we demonstrate the performance of our method 064
on various types of challenging motions, including Taek- 065
wondo, Chinese kungfu, breakdancing, rhythmic gymnas- 066
tics, and ballet. The visualized results show that our method 067
can effectively perform physics-based motion restoration 068
for a diverse range of high-difficulty movements, produc- 069
ing high-fidelity motions to the original video. Notably, 070
our training dataset does not include such a wide variety of 071
complex motions, nor does it rely on any expensive 3D an- 072
notations, which further proves the effectiveness and broad 073
applicability of our approach. 074

Additional SOTA Comparison. In Figure 6, we pro- 075
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Figure 1. Additional cases of flawed motion.

Figure 2. Visualization of the high-difficulty motions before and after our physical restoration .
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Figure 3. Physical restoration for motion generated by text2motion method.

vide additional visual comparisons with state-of-the-art 076
methods (gymnastics and yoga). The performance of each 077
method on different types of motions is consistent with the 078
visual comparisons presented in the main text. Due to lim- 079
itations in generalization, PHC+ [7, 8] struggles to simu- 080
late high-difficulty movements, resulting in falls during the 081
simulation. PhysPT [14], due to its simplified physical con- 082
straints, avoids falling during the restoration process, but its 083
physical repair ability is limited when facing high-difficulty 084
motions. It still suffers from issues related to physical real- 085
ism and struggles to maintain the original motion patterns 086
of the reference motions. In the first row of Figure 6, the 087
ground in the motion generated by GVHMR appears some- 088
what unusual as we calculate it with the mean operation. 089
This is because we need to display the entire motion in the 090
visualization. We do not use this approach in other visual- 091
izations and metric calculations. Instead, we calibrate the 092
ground based on the foot position in the first frame. 093

3. Motion Inbetweening 094

Motion Representation. In the Mask-conditioned Motion 095
Correction Module (MCM), we adopt a simpler representa- 096
tion that ensures convenient conversion to the SMPL [6] for- 097
mat. Given a human motion sequence x ∈ RN×D, the seg- 098
mented human mask m ∈ RN×w×h, and a keyframe sig- 099
nal (which identifies frames requiring inbetweening), this 100
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Figure 4. Visualization of the in-the-wild and high-difficulty motions restored from our method (1/2).

module restore the mismatched motion frames. The human101
motion x is derived from the reference motion, where we102

compute a 135-dimensional motion representation based on 103
SMPL parameters, which includes 3-dim translation, 6-dim 104
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Figure 5. Visualization of the in-the-wild and high-difficulty motions restored from our method (2/2).

root rotation, and 21 body joint rotations. The observation105
signal is generated from the mismatch detection algorithm.106

Motion Inbetween with Diffusion Models. Diffusion 107
models have demonstrated impressive performance in gen- 108
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Figure 6. Additional comparison with SOTA techniques.

erative modeling, and recently, diffusion probabilistic mod-109
els have been introduced into 3D human motion generation,110
framing motion generation as a sequence generation prob-111

lem. Motion inbetween is a subtask of 3D human motion 112
generation. Unlike regular motion generation, inbetween 113
does not directly reconstruct the entire motion from noise 114
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but provides a partial motion as a condition for the diffu-115
sion model. The goal of inbetween is to generate the miss-116
ing part of the motion. Typically, motion is generated un-117
der certain conditions (such as text, music, or images), and118
these conditions can also be used for the inbetween task.119
In this work, we use the human body mask obtained from120
segmentation as a condition (essentially a simplified version121
of the image, leveraging the powerful priors of current seg-122
mentation models to alleviate the burden on the inbetween123
model). Guided by the human mask m, the diffusion model124
uses a denoising network to learn the process of denoising125
Gaussian noise.126

pθ(xt−1|xt,m) := N (xt−1;µθ(xt, t,m),Σt) (1)127

where θ demonstrates the parameters of the denoising net-128
work and the untrained time-dependent covariance is set ac-129
cording to the variance schedule. Following current motion130
generation methods, we use sample-estimation reparame-131
terization and directly predict the clean sample estimate132
from noise, rather than the mean estimate. The training goal133
of the diffusion model can be defined as:134

L := E(x0,m)∼q(x0,m),t∼[1,T ]

[
∥x0 −Gθ(xt, t,m)∥2

]
.

(2)135
Auxiliary Losses In addition to the basic reconstruction136

loss, we introduce several auxiliary losses to enhance train-137
ing stability. Since we adopt a rotation-based motion rep-138
resentation, we need to recover the global position of the139
human body before computing the other losses. We incor-140
porate a loss on joint positions.141

Ljoint =
1

J

J∑
i=1

∥FK(x(i))− FK(x̂(i))∥22 (3)142

where FK means the forward process for motion represen-143
tation to get the absolute 3D position p. x̂ and p̂ is obtained144
from the model prediction. To enhance the smoothness of145
the generated motion, we introduce a velocity loss and an146
acceleration loss.147

Lvel = ∥pvel − p̂vel∥
2
2 ,Lacc = ∥pacc − p̂acc∥

2
2 , (4)148

Additionally, to improve the accuracy of root position gen-149
eration, we introduce extra constraints on both the root150
translation and orientation.151

Lro = ∥xro − x̂ro∥22 + ∥xro
vel − x̂ro

ro∥
2
2 + ∥xro

acc − x̂ro
acc∥

2
2 ,
(5)152

where xro is 7-dim orientation and translation of motion x.153
Training process. A random motion segment, selected154

at a random sequence position, is chosen as the generation155
target. Our model is trained to reconstruct this segment.156
Both keyframe conditioning signals c and mask condition-157
ing signal m are set to ∅ for 10% of training data to make158
our model suited for unconditioned motion generation.159

Mismatch Detection. In practice, we calculate the IoU 160
of 2D human mask and the 2D projection of SMPL mesh 161
for mismatch detection. For our high-difficulty datasets, the 162
threshold is 0.5 with greater tolerance. For general datasets 163
like AIST++ and kungfu, we take 0.7 as the threshold. 164

4. Motion Prediction Prior 165

Following Multi-Transmotion [1], we designed a motion 166
prediction model based on transformer architecture, which 167
was trained on high-quality motion datasets and then par- 168
ticipated as a motion prior in our reinforcement learning 169
training process. The inputs of the model are human key 170
point positions, joint point velocities, rotation angles, rota- 171
tion angular velocities, and root trajectories, and the outputs 172
of the model are future human poses and root trajectories. 173
Specifically, we use a modality-specific multilayer percep- 174
tron layer to implement the tokenization of each input, and 175
the resulting token will be fed into the Transformer Encoder 176
along with the initialized future motion token to predict the 177
future token. Finally, the predicted token is fed into the tra- 178
jectory decoder and pose decoder to get the final output. 179

5. Implementation Details 180

Training Our method consists of two modules, MCM 181
and PTM, which are trained separately. For the Mask- 182
conditioned Motion Correction Module, we select the 183
ground truth data from the Human3.6M [2], AIST++ [4, 184
12], and Motion-X [5] Kungfu datasets as the training set. 185
Additionally, we use SAM [3] to process these datasets 186
and generate the corresponding mask data. The mask data 187
serves as a condition to guide the motion correction process. 188
For the Physics-based Motion Transfer Module, we use the 189
AMASS [9], Human3.6M, AIST++, and Kungfu datasets 190
for training. Our method is not limited to a fixing short- 191
motion clip, on the contrary, our approach supports long- 192
duration motion repair. The repair capability depends on 193
the quality of the reference motion and the complexity of 194
the action, rather than the length of the motion sequence. 195

Imitation Our simulation environment is NVIDIA’s 196
Isaac Gym [10], where the humanoid model is adapted to 197
a format compatible with SMPL, as it natively supports var- 198
ious body shapes and is widely used in pose estimation 199
research. As a result, our restoration outputs can be eas- 200
ily converted to the SMPL format and rendered into realis- 201
tic meshes. Currently, we do not consider complex SMPL 202
body shapes in our approach. Our discriminator is an MLP 203
with two hidden layers with ReLU activation function. The 204
policy of our PTM is constructed with 6-layer multilayer 205
perceptions and ReLU functions. 206

Adaptation Time. We tested the time consumed by 207
adaptation on both the difficult and general datasets. For 208
the difficult data, our method needs to execute an average 209
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of 2.5k steps for about 30 minutes to repair a motion with210
a length of about 15s. For the general dataset, our method211
needs to execute an average of 500 steps for about 8 min-212
utes. All of the above experiments were performed on an213
NVIDIA 4090.214

Metrics Details In this section, we discuss the evalua-215
tion benchmarks we proposed from two aspects: physical216
realism and 2D similarity. For physical realism, we use the217
following metrics:218
• Self-Penetration (SP): SP means some surface vertices of219

the SMPL mesh (rendered from the human motion repre-220
sentation) appear inside the mesh, such as fingers passing221
through the torso. We calculate the proportion of vertices222
that penetrate the body mesh in each frame and average223
this ratio over time as the self-penetration metric.224

• Ground-Penetration (GP): GP refers to vertices of the225
SMPL mesh that appear below the ground. We com-226
pute the distance between the ground and the lowest body227
mesh vertex that is below the ground.228

• Float: Float happens when all body mesh vertices are229
above the ground. Following [13], we calculate the dis-230
tance between the ground and the lowest body mesh ver-231
tex above the ground. Both GP and Float use a 5mm232
threshold, with values below this threshold being ignored.233

• Foot-Skate (FS): We identify the foot joints in two adja-234
cent frames that are in contact with the ground, and then235
calculate their average horizontal displacement across236
frames.237

For 2D similarity, we use the following metrics:238
• 2D Keypoint OKS: We first compute the 3D absolute po-239

sitions from the motion representation, then project these240
3D coordinates onto the 2D image plane. The 2D Key-241
point OKS is then calculated as the similarity between242
the 3D projections and the 2D annotations. To ensure243
compatibility with various 2D/3D keypoint representa-244
tions, the OKS calculation uses 12 keypoints: left/right245
hip, knee, ankle, shoulder, elbow, and wrist. The 2D an-246
notations is obtained from multiple advanced keypoints247
detection methods and we corrected them manually.248

• Mask-Pose Similarity (MPS): To provide a more granu-249
lar description of the motion and take into account the250
human shape, we introduce MPS to calculate the similar-251
ity between the 2D projection of the human mesh and the252
segmentation mask of the human body in the image. MPS253
is calculated by determining the ratio of 3D mesh ver-254
tices within the human segmentation mask. A larger ratio255
indicates higher 2D similarity and more accurate human256
shape estimation.257

6. User Study258

To obtain subjective evaluations of different methods, we259
recruited 44 participants to watch 30 pairs of videos, with260
one video produced by our method and the other by261

Figure 7. The physical restoration user study of high-difficulty
and in-the-wild motions.

Figure 8. Screenshot of user study.

GVHMR, PhysPT, or PHC+. For each pair of videos, we 262
asked participants to answer three questions: which video 263
was of better overall quality? Which video has better phys- 264
ical realism? Which video is more restored to the origi- 265
nal video? Thus we ended up with 3960 comparisons. For 266
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each comparison, we asked participants to choose between267
three options, the first being better, the second being better,268
or both being about the same. The evaluation results are269
shown in Figure 7, our method outperforms all other meth-270
ods in more than 70%, and only in less than 20% of the271
cases are we defeated by other methods.272
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