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1. Comparisons of Language-Grounded Driv-
ing Paradigms

We present the comparisons of our method with exist-
ing language-grounded driving paradigms across three key
properties:
• Decoupling between LLM and planner operations (D)
• Asynchronous execution at different frequencies (As)
• Adaptive scheduling autonomy (Ad)

Table 1. Comparison results of our and existing paradigms for
language-grounded driving, in terms of three critical properties.

Generation Method D As Ad
I [3], [5] ✗ ✗ ✗
II [1], [4] ✓ ✓ ✗

III Ours ✓ ✓ ✓

The results are exhibited in Table 1. Specifically, LM-
Drive [3] and AD-H [5] employ a sequential paradigm
where the LLM reasoning and trajectory prediction are cou-
pled in a single forward pass, resulting in unavoidable in-
ference delays. We classify this design paradigm as Gen-
eration I of language-grounded driving paradigms. Subse-
quently, the second generation of driving frameworks [1, 4]
emerge with parallel and asynchronous architectures, en-
abling the integration of low-frequency LLM reasoning
with high-frequency trajectory planning. However, their
fixed asynchronous scheduling lacks flexibility, compro-
mising the system’s ability to handle complex or emergency
situations. In contrast, our proposed AdaDrive framework
not only implements an asynchronous slow-fast architecture
but also incorporates adaptive mechanisms for LLM activa-
tion and integration, enabling dynamic response to varying
driving conditions.

2. Extended Details of Benchmarks
Dataset: The training data consists of 64K samples from
the official language-driven autonomous driving dataset [3],
collected in the CARLA [2] environment across 8 towns.
Each sample includes:
• Multi-sensor data: RGB images from four views (front,

rear, left, right) and LiDAR scans.
• Navigation instructions: Natural language commands

guiding the vehicle’s movement, such as “it’s imperative
to make a right turn at the next traffic signal” and “keep
going straight until you reach the next junction”.

Table 2. Ablation of different slow-fast fusion strategies on the
LangAuto-Short benchmark.

Strategy Weight DS ↑ RC↑ IS↑

Trajectory Averaging 1:1 63.7 75.8 0.80
Feature Fusion 1:1 66.4 74.2 0.85
Connector-H adaptive 70.6 85.3 0.81

Table 3. Ablation of using different LLMs on the LangAuto-Short
benchmark.

LLM Params DS ↑ RC↑ IS↑

TinyLLaMa 1.1B 70.6 85.3 0.81
LLaVA 7B 75.9 89.3 0.84

Benchmark: We evaluate our model using the stan-
dard LangAuto benchmarks [3] on the CARLA simulator.
The benchmarks comprise three tracks with distinct route
lengths:
• LangAuto: routes longer than 500 meters.
• LangAuto-Short: routes between 150 and 500 meters.
• LangAuto-Tiny: routes shorter than 150 meters.

3. More Experiments
Analysis of Different Slow-Fast Fusion Strategies. We
compare our Connector-H controlled dynamic LLM con-
tribution scaling strategy against two full-weight baselines:
1:1 trajectory averaging and 1:1 feature fusion. Table 2
demonstrates that our adaptive fusion strategy achieves su-
perior driving performance.

Analysis of Using Different LLMs: Beyond TinyL-
LaMa, we also implement our method with LLaVA-7B (us-
ing LoRA). As shown in Table 3, incorporating LLaVA fur-
ther improves the DS score to 75.9%, demonstrating the
scalability of our approach.

4. Visualizations
We provide some visualization results in Fig. 1, demon-
strating representative scenarios where AdaDrive activates
its LLM component adaptively in response to: (a) long-
tailed emergency scenarios (e.g., jaywalking pedestrians),
(b) challenging or ambiguous instruction comprehension
and reasoning contexts (e.g. multi-stage navigation) and (c)
complex road conditions. These results intuitively demon-
strate how AdaDrive balances robustness and efficiency
through dynamic LLM scheduling.



Figure 1. Qualitative comparison of the Baseline and AdaDrive, showing AdaDrive’s dynamic LLM activation for enhanced driving safety.
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