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Supplementary Material

A. Additional Theoretical Analysis
A.1. Complete Derivation of the Proposed Method
Gradient descent updates the model parameters as follows:

θt+1 = θt − ηt∇L(θt), (1)

where θt ∈ Rm×n is a real-valued matrix with m rows and
n columns. For gradient calculations, we treat θt as a col-
umn vector with mn rows, i.e., θt ∈ Rmn×1. The learning
rate ηt is a real-valued scalar hyperparameter.

Introducing perturbation θ̃t := θt+δθt, where δ is a tiny
real-valued scalar hyperparameter, we obtain:

θ̃t+1 = θ̃t − ηt∇L(θ̃t). (2)

The perturbation is propagated backward as follows:

δθt+1 = θ̃t+1 − θt+1

= δθt − ηt

(
∇L(θ̃t)−∇L(θt)

)
.

(3)

To analyze this, we perform a first-order Taylor expan-
sion of the loss function L(θ̃t) around θt, yielding:

L(θt + δθt) = L(θt) +∇L(θt)
T δθt + o(∥δθt∥2), (4)

where the remainder o(∥δθt∥2) represents the higher-order
infinitesimal terms that are not included. To simplify
the calculation, we generally don’t consider this remain-
der. Here, L represents a scalar function and ∇L(θt)

T ∈
R1×mn is the partial derivative of the scalar function L(θt)
with respect to the vector θt.

We take the derivative of both sides of the Equation 4
with respect to θt. First, we take the derivative of the left-
hand side and apply the chain rule:

∇L(θ̃t) = ∇(L(θt + δθt))

= ∇L(θt + δθt)∇(θt + δθt),
(5)

Simplifying this formula, we obtain:

∇L(θ̃t) = ∇L(θ̃t)(1 + δ)I, (6)

where I is the identity matrix.
Next, we take the derivative of the right side of Equation

4 :∇(L(θt) +∇L(θt)
T δθt), and the first term is: ∇L(θt).

The second term ∇
(
∇L(θt)

T δθt
)

applies the product rule:

∇
(
∇L(θt)

T δθt
)
= ∇

(
∇L(θt)

T
)
δθt +∇L(θt)∇δθt

= ∇
(
∇L(θt)

T
)
δθt +∇L(θt)δI.

(7)
Combining the results of the first and second terms gives:

∇(L(θt) +∇L(θt)
T δθt) = ∇L(θt) +H[L(θt)]δθt +∇L(θt)δI

= ∇L(θt)(1 + δ)I +H[L(θt)]δθt,
(8)

where H[L(θt)] ∈ Rmn×mn is the Hessian matrix, which is
the second-order partial derivative of the real-valued func-
tion L(θt) with respect to the real vector θt.

Finally, we combine the Equation 6 and Equation 8 to
get:

∇L(θ̃t)(1 + δ)I = ∇L(θt)(1 + δ)I +H[L(θt)]δθt. (9)

We multiply both sides of the formula by 1
1+δ I:

∇L(θ̃t) = ∇L(θt) +
1

1 + δ
H[L(θt)]δθt, (10)

δ is a very small scalar, it can often be ignored in actual
calculations. In the end, we can get:

∇L(θ̃t) ≈ ∇L(θt) +H[L(θt)]δθt. (11)

We can get:

∇L(θ̃t)−∇L(θt) ≈ H[L(θt)]δθt. (12)

Then substituting Formula 12 into Equation 3, we can
get:

δθt+1 = (I − ηtH[L(θt)]) δθt. (13)

Then by recursion we can get:

δθt = (I − ηt−1H[L(θt−1)]) (I − ηt−2H[L(θt−2)])

· · · (I − η0H[L(θ0)]) δθ0.
(14)

In this way, we have established the equation for the
propagation of perturbations in the model and its relation-
ship with the learning rate and the Hessian matrix.

The definition of the Lyapunov exponent is:

LE = lim
t→∞

1

t
ln

(
∥δθt∥
∥δθ0∥

)
. (15)
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Equation 14 considers the 2-norm and establishes the
following relationship:

∥δθt∥ ≤ ∥δθ0∥
t−1∏
i=0

∥(I − ηiH[L(θi)])∥ . (16)

We also derive the following inequality:

∥δθt∥ ≥ ∥δθ0∥
t−1∏
i=0

(1− ηi∥H[L(θi)])∥). (17)

Next, we use mathematical induction to prove Inequality
17. When t = 1, obviously we have:

To verify Inequality 17, we employ mathematical induc-
tion.

∥δθ1∥ = ∥(I − η0H[L(θ0)]δθ0∥
≥ ∥δθ0∥ − η0∥H[L(θ0)]δθ0∥
≥ ∥δθ0∥ − η0∥H[L(θ0)]∥∥δθ0∥.

(18)

Assume that the inequality holds for t = k, such that:

∥δθk∥ ≥ ∥δθ0∥
k−1∏
i=0

(1− ηi∥H[L(θi)])∥). (19)

So we can get the following representation relationship:

∥δθk+1∥ = ∥(I − ηkH[L(θk)])δθk∥
= ∥δθk − ηkH[L(θk)]δθk∥.

(20)

Using the vector 2-norm triangle inequality, we get:

∥δθk − ηkH[L(θk)]δθk∥ ≥ ∥δθk∥ − ηk∥H[L(θk)]δθk∥.
(21)

According to the properties of the 2-norm, we can ob-
tain:

ηk∥H[L(θk)]δθk∥ ≤ ηk∥H[L(θk)]∥∥δθk∥. (22)

Then combining Inequality 21 and Inequality 22, we can
get:

∥δθk − ηkH[L(θk)]δθk∥ ≥ ∥δθk∥ − ηk∥H[L(θk)]δθk∥
≥ ∥δθk∥ − ηk∥H[L(θk)]∥∥δθk∥.

(23)
Combining Equation 20 and Inequality 23, and substitut-

ing our results into the inductive hypothesis:

∥δθk+1∥ ≥ (1− ηk∥H[L(θk)]∥)∥δθk∥

≥ (1− ηk∥H[L(θk)]∥)∥δθ0∥
k−1∏
i=0

(1− ηi∥H[L(θi)]∥).

(24)
We can get:

∥δθt∥ ≥ ∥δθ0∥
t−1∏
i=0

(1− ηi∥H[L(θi)]∥), (25)

where we have proved that Inequality 17.
Substituting Inequality 16 into the definition of the Lya-

punov Exponent (LE), the relationship between the model
learning rate η nd LE can be expressed as follows:

LE = lim
t→∞

1

t
(ln ∥δθt∥ − ln ∥δθ0∥)

≤ lim
t→∞

1

t
(

t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) + ln ∥δθ0∥

− ln ∥δθ0∥).
(26)

Similarly, by substituting Inequality 17 into the defini-
tion of the Lyapunov Exponent, we derive the following
bounds for LE based on the model learning rate η:

LE ≥ lim
t→∞

1

t

t−1∑
i=0

ln(1− ηi∥H[L(θi)]∥)

LE ≤ lim
t→∞

1

t

t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) .

(27)

A.2. Further Analysis for the Results Presented in
Figure 3 of the Manuscript

To further explain the results shown in Figure 3 of the
manuscript, we made certain simplifications in the compu-
tation of LE. Specifically, the exact value of the natural log-
arithm term, ln

(
∥δθt∥
∥δθ0∥

)
, used in the LE definition in Equa-

tion 15, represents a normalized value. For better visualiza-
tion of the model’s LE curve trend, we omit normalization,
resulting in the following formulation:

LE = lim
t→∞

1

t
ln (∥δθt∥) . (28)

By substituting Inequality 16 into Equation 28, we can
use the properties of logarithms to decompose the product
and convert the terms into summations:

LE ≤ lim
t→∞

1

t

(
t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) + ln (||δθ0||)

)
.

(29)
Since ln (||δθ0||) is a constant, it can be extracted and

expressed separately as:

LE ≤ lim
t→∞

(
1

t

t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) +
ln ||δθ0||

t

)
.

(30)
As t approaches infinity, the term ln ||δθ0||

t converges to
zero. Consequently, the final expression simplifies to:
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LE ≤ lim
t→∞

1

t

t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) . (31)

Similarly, substituting Inequality 17 into Equation 28,
we can finally obtain the expression:

LE ≥ lim
t→∞

1

t

t−1∑
i=0

ln(1− ηi∥H[L(θi)]∥)

LE ≤ lim
t→∞

1

t

t−1∑
i=0

ln (∥I − ηiH[L(θi)]∥) .

(32)

Here, θt is processed as a column vector, and ∥θt∥ de-
notes its L2 norm, also referred to as the Euclidean norm.
θt represents the difference between the current parameter
state and the parameter state from the previous iteration.
The introduction of perturbations increases the diversity of
the model’s parameter distribution, causing parameters to
shift in various directions and increasing the entropy of the
parameter distribution. At the initial time t+ 1, the 2-norm
calculated by the unperturbed method yields a larger Eu-
clidean norm ∥θt∥. Consequently, as indicated by Inequal-
ity 32, the Lyapunov Exponent (LE) for our method is ini-
tially higher than for other methods. As training progresses,
with continual parameter updates, the overall LE curve for
our approach remains higher compared to other methods.

B. LEAwareSGD Pipeline Overview
A pipeline diagram has been added to illustrate Algorithm
?? and provide an overview of the entire framework, en-
hancing clarity and aiding reader comprehension.

C. Additional Experimental Results
C.1. Comparison with AdvST on DomainNet
Table 1 shows the classification accuracy (%) on the Do-
mainNet dataset, comparing our method with AdvST [1].
Our method consistently outperforms AdvST across all do-
mains, with improvements of 0.72% in P (Painting), 1.78%
in I (Infograph), and 1.13% in C (Clipart). The average ac-
curacy of our method is 22.44%, which is a 0.55% increase
over AdvST (21.89%). These results highlight the effective-
ness of our approach in enhancing domain generalization.

Methods P I C S Q R Avg.

AdvST [1] 24.56 18.85 26.32 27.00 6.67 27.95 21.89
Ours 25.28 20.63 27.45 27.39 7.17 28.15 22.44 ±0.24

Table 1. Classification accuracy (%) comparison on the Domain-
Net dataset. The best results are in bold.

C.2. Comparison with Optimizer Approaches on
OfficeHome

The results shown in Table 2 underscore the effectiveness
of our LEAwareSGD optimizer for SDG. LEAwareSGD
achieves the highest average accuracy of 54.38%, surpass-
ing the best comparison optimizer, SGD, which achieves
an average accuracy of 53.20%. LEAwareSGD consistently
improves performance across all domains (A, C, P, and R).
In contrast, adaptive optimizers such as Adam, AdamW,
and RMSprop achieve significantly lower average accura-
cies of 48.10%, 47.81%, and 46.50%, respectively. These
results suggest that adaptive learning rates may lead these
optimizers to overfit on domain-specific features, reduc-
ing their generalization capacity. The consistent gains with
LEAwareSGD highlight the benefits of LE guidance, which
supports broader exploration of the parameter space and
helps avoid overfitting. Overall, these results demonstrate
that the SGD’s integration of LE-guided learning provides
substantial advantages over traditional optimizers, enhanc-
ing model generalization across diverse domains.

Methods A C P R Avg.

Adam 47.48 45.68 44.82 54.41 48.10
AdamW 45.88 45.91 44.68 54.75 47.81
RMSprop 44.74 44.52 42.85 53.89 46.50
SGD 51.56 52.15 49.57 59.53 53.20
Ours 52.89 55.18 51.69 58.95 54.38±0.30

Table 2. Comparison results (%) using different optimizers on the
OfficeHome dataset. The best results are in bold.

C.3. Comparison with Methods Employing Only
Optimizers without Data Augmentation

To further validate the effectiveness of our LEAwareSGD
optimizer, we removed the data augmentation module to
highlight the optimizer’s contribution. As shown in Table
3, the results demonstrate our method consistently outper-
forms SGD and Adam across different learning rates on
both the PACS and OfficeHome datasets. These results fur-
ther demonstrate the effectiveness of our method in the con-
text of domain generalization.
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Dataset Optimizer lr=0.001 lr=0.0001 lr=0.0005

PACS Adam 23.70 59.02 26.70
SGD 62.88 57.04 62.23
Ours 63.03 59.28 63.25

OfficeHome Adam 26.79 49.40 36.51
SGD 53.18 49.46 53.40
Ours 53.79 50.03 54.15

Table 3. Comparison results (%) using different optimizers with-
out data augmentation on the PACS and OfficeHome datasets. The
best results are in bold.

C.4. Comparison under Different Learning Rate
Schedules

To further analyze the effectiveness of LEAwareSGD, we
compare Adam and SGD using various learning rate sched-
ules. Standard schedulers adjust learning rates per epoch,
while our method, an optimizer, adapts them per batch. We
evaluated Adam, SGD, and our method under three com-
monly used learning rate schedulers: StepLR (decaying to
0.1× at epoch 30), CosineAnnealingLR, and ReduceLROn-
Plateau (based on validation accuracy), as well as a baseline
without any scheduling (denoted as Step, Cosine, Plateau,
and w/o, respectively). As presented in Table 4, results on
both datasets indicate that our method surpasses Adam and
SGD across all configurations and maintains its advantage
even in the absence of any learning rate schedule.

Dataset Optimizer Step Cosine Plateau w/o

PACS Adam 67.06 64.99 67.60 65.83
SGD 66.43 67.19 66.77 66.71
Ours 69.46 69.26 68.55 69.33

OfficeHome Adam 48.08 47.81 49.27 47.67
SGD 52.23 53.20 53.71 53.61
Ours 52.47 54.38 54.09 54.13

Table 4. Comparison results (%) using different learning rate
schedules on the PACS and OfficeHome datasets. The best re-
sults are in bold.

C.5. Comparison with Optimizer Approaches
across Different Learning Rates

We initially set the learning rate to 0.001 for Adam,
AdamW, RMSprop, SGD and our approach and further
tested additional learning rates. Table 5 presents the re-
sults for PACS dataset, highlighting the optimizer’s high
sensitivity to the chosen learning rate, with their best perfor-
mance (67.06% for SGD) remaining inferior to our method
(69.46%), highlighting the effectiveness and robustness of
LEAwareSGD.Table 6 displays the results on the Office-
Home dataset, emphasizing the optimizer’s strong depen-

dence on the learning rate. Notably, even the best perfor-
mance achieved by SGD (53.20%) falls short of our method
(54.38%), demonstrating the superior effectiveness and ro-
bustness of LEAwareSGD.

Optimizer lr=0.001 lr=0.0001 lr=0.0005
Adam 18.03 66.43 36.88
AdamW 15.70 66.83 34.34
RMSprop 15.76 62.33 16.64
SGD 67.06 47.17 63.26
Ours 68.29 67.09 69.46

Table 5. Average accuracy (%) on PACS under Optimizer different
learning rates.

Optimizer lr=0.001 lr=0.0001 lr=0.0005
Adam 26.62 48.10 34.21
AdamW 27.57 47.81 34.69
RMSprop 17.43 46.50 26.55
SGD 52.60 53.20 53.08
Ours 53.31 54.38 53.83

Table 6. Average accuracy (%) on OfficeHome under Optimizer
different learning rates.

C.6. Comparison with Backbone Approaches on
OfficeHome

Table 7 shows that our approach achieves 58.56% on
ResNet-34, improves to 60.91% on ResNet-50, further
reaches 62.99% on ResNet-101, and attains its highest per-
formance of 64.95% on ResNet-152. These results high-
light the robustness, versatility, and superior accuracy of our
method across different backbone architectures.

Backbone Methods A C P R Avg.

ResNet34 PSDG 56.63 56.04 54.13 60.58 56.85
AdvST 50.22 52.73 51.43 59.68 53.52
Ours 56.59 58.41 56.91 62.34 58.56

ResNet50 PSDG 59.94 58.71 56.71 61.76 59.28
AdvST 57.69 59.16 56.09 63.36 59.08
Ours 60.31 61.05 58.54 63.73 60.91

ResNet101 PSDG 59.32 59.65 58.98 63.68 60.41
AdvST 59.47 62.09 58.70 64.41 61.17
Ours 62.24 62.76 61.01 65.93 62.99

ResNet152 PSDG 64.08 62.89 61.27 65.67 63.48
AdvST 63.00 62.30 60.40 67.29 63.25
Ours 64.41 63.62 63.97 67.78 64.95

Table 7. Comparison results (%) using different ResNet series
backbones on the OfficeHome dataset. The best results are in bold.
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C.7. Comparison with limited training data on Of-
ficeHome

Our method yields significant gains, as shown in Table 8.
At the 10% data ratio, our approach achieves an average ac-
curacy of 38.77%, a 4.00% increase over AdvST’s 34.77%.
With 20% data, the average accuracy rises to 45.55%, out-
performing AdvST by 4.04%. At the 50% data ratio, our
method achieves an average accuracy of 51.79%, a 3.55%
improvement over AdvST’s 48.24%.

Ratio Methods A C P R Avg. ∆Avg.

10% AdvST 27.93 32.72 36.88 41.56 34.77
Ours 32.00 37.13 42.03 43.92 38.77 +4.00

20% AdvST 34.10 41.84 42.73 47.38 41.51
Ours 37.46 45.53 47.81 51.41 45.55 +4.04

50% AdvST 43.33 47.63 47.92 54.06 48.24
Ours 47.88 51.64 51.37 56.26 51.79 +3.55

Table 8. Performance comparison (%) using different data ratios
on OfficeHome dataset.
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Figure 1. PACS overview.

OursADA AdvST

Categories:        0(dog)        1(elephant)        2(giraffe)        3(guitar)        4(horse)        5(house)        6(person)

Figure 2. The t-SNE visualization of features from different categories on the PACS dataset. The model was trained on the Sketch
domain and tested on the remaining domains. Different colors indicate different categories. It shows that our method achieves enhanced
classification performance, as indicated by well-separated clusters corresponding to different categories.
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Domains:       Art Painting       Cartoon       Photo       Sketch

OursADA AdvST

Figure 3. The t-SNE visualization of features from different domains on the PACS dataset. Different colors indicate different domains. It
highlights the ability of our method to bridge the gap between domains.
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Figure 4. OfficeHome overview.
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Figure 5. DomainNet overview.
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