A. Theoretical Analysis of AT-PR Algorithm
Convergence

As discussed in Sec. 3.2, our algorithm’s effectiveness relies
on two convergence assumptions: 1) Multi-Start PGD with
random hyperparameters may find all local optima in Step
1; 2) Boundary search with adaptive hyperparameter may
detect the local boundary in Step 2. We now provide their
proof sketch, which will be included with more details in
the main paper.

Convergence of Multi-Start PGD. It is known from the
original PGD paper [36] that under standard assumptions
of differentiability, Lipschitz continuity, and convex feasi-
ble set, a single PGD run converges to a local stationary
point of L(z + ¢; 6) (the local “loss landscape”) Assume L
contains K distinct local maxima {4} }% | corresponding
to adversarial regions of varying sizes, with associated at-
traction basins { A}, . Let P, denote the probability that
a random PGD starting point §g ~ Uniform(B(z,~)) lies
within Aj. Then, the probability that after NV random ini-
tializations of PGD runs with varying step size, iterations,
at least one PGD run finds a perturbation in Ay, is:

PP(at least one PGD finds 67) = 1 — (1 — P)™N. ()

Since the events are independent, the probability that all
K local optima are found after N runs is:

P(find all) H [1-(1-P)"]. (6)

This probability approaches 1 as N — co.

Convergence of Boundary Search. The convergence of
the boundary search step is already established in [9], where
it is shown that under standard assumptions of local Lips-
chitz continuity and non-vanishing gradients near the deci-
sion boundary, it converges to an e-approximate boundary
point in O(1/¢) iterations. We apply this search directly, on
the set of adversarial examples (AEs) obtained from Step 1.

B. Hyperparameter Selection and Implemen-
tation Details

B.1. Experiment Setup

All experiments are conducted on one NVIDIA GeForce
RTX 4090 GPU, Python 3.11, PyTorch 2.3.1. For the
CIFAR-10, CIFAR-100, and SVHN datasets, we indepen-
dently train ResNet-18, and WideResNet-50-2 on each
dataset, and additionally include a Vision Transformer
(ViT) for CIFAR-10. For the TinyImageNet dataset, we
train ResNet-18 and ResNet-34 using the same training con-
figuration as for CIFAR-10. All models are trained using
stochastic gradient descent (SGD) with a momentum of 0.9
[45] and a weight decay coefficient of 5.0 x 10~%. Training

is performed for 200 epochs with an initial learning rate of
0.01, which is decayed by a factor of 10 at epochs 60, 120,
and 150.

B.2. Training Algorithms Hyperparameter Setting

* FGSM. We use a one-step gradient attack with v =
8/255, applying FGSM at each training step for AT.

* PGD. We set the perturbation radius to v = 8/255 for
all dataset. During training, we performed 10 steps of
projected gradient descent attack, using a step size of
a = 2/255 for CIFAR-10, CIFAR-100, and TinyIma-
geNet, and a step size of o = 1.25/255 for SVHN.

* TRADES. We used the same step size and number of
steps as described above for PGD. Additionally, we ap-
plied a weight of A = 6.0 for all datasets, following the
approach in [66].

* MART. We used the same step size and number of steps
as described above for PGD. Additionally, we applied a
weight of A = 5.0 for all datasets, following the approach
in [57].

* ALP. Follow the original work [29], we set A = 1 for all
datasets, except A = 0.5 for SVHN.

» CLP. Following the same setting as ALP, we also set A =
1 for all datasets, except A = 0.3 for SVHN.

* AT-PR. For Algo. | Step 1, we apply PGD attacks to gen-
erate a diverse set of AEs. We set the size of AE can-
didate sets as N = 10, which our experiments show is
sufficient to capture this diversity. We sample step sizes
from amin = 0.004 to amax = 0.01, and attack steps from
StePmin = 7 t0 stepmax = 12 with v = 8/255 . For the
boundary search in Steps 2 and 3, we set the maximum
number of iterations to C' = 20.

C. Sketch Analysis of Generalization Errors

Following the recent PAC-Bayes analysis for AR [54], the
generalization in PR can be bounded as:

KL(Q[|P) + log(1/)
2n

where Rpg is the expected PR error (measured over the true
data distribution), Rpg is the empirical PR error (measured
over the training data), () and P are the posterior and prior
distributions of the DL model weights (measured by KL
divergence). TV is the fotal variation of 11 and A which
are distributions on inputs and perturbation norm-balls, i.e.,
X x Y x B. A is the true natural perturbation distribu-
tion (same to the one used in PR evaluation); and II de-
notes the AE distribution generated by the training proce-
dure. Our AT-PR, by focusing on the “widest” adversarial
regions rather than only “peaky” worst-case regions, lead-
ing to a II that better aligns with A. This reduces the to-
tal variation T'V term and results in a tighter generalization
bound compared to AT-WCR.

Rpr < RPR+TV(H||A)+\/ , (1)
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