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6. Proof of Lemma 1
For a deterministic quantization process Q(·), the condi-
tional probability p(U |X) can only take values of 0 or 1,
i.e.,

p(U |X) =

{
1, if U = Q(X)
0, if U ̸= Q(X)

. (17)

Similarly, for a deterministic dequantization process
Q−1(·), it is by definition a bijection function, i.e., given
the index U or the reconstruction X̂ , we can uniquely de-
termine the corresponding value of X̂ or U , respectively.
Therefore, we have

p(X̂|U) =

{
1, if X̂ = Q−1(U)

0, if X̂ ̸= Q−1(U)
, (18)

p(U |X̂) =

{
1, if U = Q(X̂)

0, if U ̸= Q(X̂)
, (19)

and overall,

p(X̂|X) =

{
1, X̂ = Q−1(Q(X))

0, X̂ ̸= Q−1(Q(X))
. (20)

Thus, given Eqn.(18) to Eqn.(20), the following conditional
entropy is by definition equal to 0:

H(X̂|U) = H(U |X̂) = H(X̂|X) = 0. (21)

Furthermore, from the equality of mutual information
I(X; X̂) and the chain rule of joint entropy H(X̂,U), we
have{

I(X; X̂) = H(X̂)−H(X̂|X)

H(U |X̂) +H(X̂) = H(X̂|U) +H(U)
. (22)

Substituting Eqn.(21) into Eqn.(22), we conclude{
I(X; X̂) = H(X̂)

H(X̂) = H(U)
, (23)

and thus

H(U) = I(X; X̂). (24)

7. Proof of Lemma 2
Recalling the proof in Sec. 6, since both the analysis trans-
form TA(·) and synthesis transform TS(·) are deterministic,
the following holds:

p(U |X) =

{
1, if U = Q(TA(X))
0, if U ̸= Q(TA(X))

, (25)

p(X̂|U) =

{
1, if X̂ = TS(Q

−1(U))

0, if X̂ ̸= TS(Q
−1(U))

, (26)

p(X̂|X) =

{
1, if X̂ = TS(Q

−1(Q(TA(X))))

0, if X̂ ̸= TS(Q
−1(Q(TA(X))))

,

(27)
and therefore

H(X̂|U) = H(X̂|X) = 0. (28)

Herein, the core distinction between the transform coding
and direct coding models lies in the fact that the synthesis
transform TS(·), unlike the dequantization function Q−1(·),
does not inherently guarantee a bijective mapping, partic-
ularly in the context of neural transforms. Consequently,
given the reconstruction X̂ , there may be uncertainty in Ŷ
and thus U , i.e.,

H(U |X̂) ̸= 0. (29)

Substituting Eqn.(28) and Eqn.(29) into Eqn.(22), we can
conclude {

I(X; X̂) = H(X̂)

H(X̂) = H(U)−H(U |X̂)
, (30)

and thus

H(U) = I(X; X̂) +H(U |X̂). (31)

Table 3. BD-Rate comparison between our reproduction and the
pre-trained models [44].

Kodak Tecnick CLIC Average

hyperprior 0.52% 1.88% -1.24% 0.39%

autoregressive 0.56% 2.25% -1.56% 0.41%

attention -3.32% -3.33% -5.68% -4.11%

8. Reproduced baselines
We retrain the hyperprior [4], autoregressive [8], and
attention [10] models from scratch, adhering to the
default implementation and training configurations of
CompressAI’s [44]. Four bit-rate points, i.e., λ ∈
{0.0018, 0.0035, 0.0067, 0.0130} are trained with 2 × 106

steps. The evaluation results are summarized in Table 3. On
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Figure 7. Details of (a) Four convolutional modules. (b) Inter attention module, (c) Intra attention module, and (d) Checkerboard attention
module from MLIC++ [12].

Figure 8. Comparison between the pre-trained models from Com-
pressAI’s and our reproduction on the Kodak dataset. Our repro-
duction achieves 0.52%, 0.56%, and -3.32% BD-Rates for the hy-
perprior, autoregressive, and attention models, respectively.

average, when compared to the pre-trained models of Com-
pressAI’s, our reproduction models yield 0.39%, 0.41%,
and -4.11% BD-Rates [57] for the hyperprior, autoregres-
sive, and attention models, respectively. Notably, on the
CLIC dataset, our reproduction models outperform their
pre-trained counterparts by -1.24%, -1.56%, and -5.68%
BD-Rates for the hyperprior, autoregressive, and attention
models, respectively. For the attention model, our repro-
duction model outperforms the pre-trained model on all
three evaluation datasets of Kodak, CLIC, and Tecnick by
-3.32%, -3.33%, and -5.68% BD-Rates, respectively. Note
that in the original attention network [10], the latent is mod-
eled as a mixture of Gaussians with 3 clusters. In Compres-
sAI’s default implementation, this cluster number is simpli-
fied to 1. We follow this latent implementation. The de-

tailed rate-distortion curves for the Kodak dataset are visu-
alized in Fig.8.

9. More details on source entropy models
Herein, the module designs are identical to the latent de-
signs [4, 8, 10, 12, 43], with only minor dimension adjust-
ment to fit X . The details are depicted in Fig.7. For the
attention modules from MLIC++, the depthwise separable
convolution is adopted [56].

10. Regularization with H(U |X̂) estimation
As shown in Fig.9(a), we further examine the regularization
performance by training compression networks with the fol-
lowing minimization objective:

R+ λD + αEX [log qθ(X|X̂)− log qφ(U |X̂)]︸ ︷︷ ︸
≈−(H(X|X̂)−H(U |X̂))

, (32)

where an additional entropy model qφ(U |X̂) is jointly es-
timated with qθ(X|X̂) by maximizing

max EX [log qθ(X|X̂) + log qφ(U |X̂)]. (33)

The training procedure follows Algorithm 1, consisting of
alternating steps: one step updates the compression net-
work using Eqn.(32), while another step updates the reg-
ularizer using Eqn.(33). The distribution qφ(U |X̂) is mod-
eled as a factorized Gaussian, with its neural architecture
identical to that of the analysis transform TA. We evalu-
ate this approach on the hyperprior model, with the reg-
ularization factor α set to 0.1 and all other training set-
tings consistent with Sec. 4.1. The corresponding results
are presented in Fig.9(b). As shown in Fig.9(b), introducing
the H(U |X̂) term only provides a marginal gain (approx-
imately -0.2% BD-Rate) on the CLIC dataset at 0.5 × 106



steps, while no significant improvement is observed in other
cases. One possible explanation is that learning the distribu-
tion qφ(U |X̂) is highly challenging, as it requires training
an additional “encoder” function to accurately map X̂ to
U . Moreover, due to computational complexity considera-
tions, the proposed Algorithm 1 updates the regularization
terms with only one gradient step per iteration. Experiments
reveal that even with this single-step update strategy, the
overall training complexity has already increased from ap-
proximately 28% to 45%. One might suggest reusing the
entire analysis transform TA instead of learning a new map-
ping from X̂ to U to reduce complexity. We have explored
this alternative, but its performance is inferior to the results
presented here.
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Figure 9. (a) Illustration of regularization with an additional
H(U |X̂) term; (b) Performance evaluation on the hyperprior
model.


