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6. Proof of Lemma 1

For a deterministic quantization process Q(:), the condi-
tional probability p(U|X) can only take values of O or 1,
i.e.,
1, ifU=Q(X)
”wX*{o,ﬁU¢QMd

Similarly, for a deterministic dequantization process
Q~!(), it is by definition a bijection function, i.e., given
the index U or the reconstruction X, we can uniquely de-
termine the corresponding value of X or U, respectively.
Therefore, we have
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Thus, given Eqn.(18) to Eqn.(20), the following conditional
entropy is by definition equal to O:

H(X|U)=H(U|X)=H(X|X)=0. (21)

Fuﬁherfnore, from the equality of mutual information
I(X; X) and the chain rule of joint entropy H(X,U), we
have

{ I(X;X) = H(X) - H(X|X) 22)
H(U|X)+ H(X)=HX|U)+ HU)
Substituting Eqn.(21) into Eqn.(22), we conclude
Uio @
and thus
H(U)=I(X;X). (24)

7. Proof of Lemma 2

Recalling the proof in Sec. 6, since both the analysis trans-
form T (+) and synthesis transform Tg(+) are deterministic,
the following holds:
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and therefore
H(X|U)=H(X|X)=0. (28)

Herein, the core distinction between the transform coding
and direct coding models lies in the fact that the synthesis
transform Tg(-), unlike the dequantization function Q~1(-),
does not inherently guarantee a bijective mapping, partic-
ularly in the context of neural transforms. Consequently,
given the reconstruction X, there may be uncertainty in Y
and thus U, i.e.,

H(U|X) #0. (29)

Substituting Eqn.(28) and Eqn.(29) into Eqn.(22), we can
conclude

I(X;X) = H(X)
{ HX) - B -HUX) Y
and thus
HU)=I(X;X)+ HU|X). (31)

Table 3. BD-Rate comparison between our reproduction and the
pre-trained models [44].

Kodak Tecnick CLIC Average
hyperprior  0.52% 1.88% -1.24% 0.39%
autoregressive 0.56% 2.25% -1.56% 0.41%
-3.32% -3.33% -5.68% -4.11%

attention

8. Reproduced baselines

We retrain the hyperprior [4], autoregressive [8], and
attention [10] models from scratch, adhering to the
default implementation and training configurations of
CompressAl’s [44].  Four bit-rate points, ie., A €
{0.0018,0.0035,0.0067,0.0130} are trained with 2 x 10°
steps. The evaluation results are summarized in Table 3. On
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Figure 7. Details of (a) Four convolutional modules. (b) Inter attention module, (c) Intra attention module, and (d) Checkerboard attention

module from MLIC++ [12].
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Figure 8. Comparison between the pre-trained models from Com-
pressAl’s and our reproduction on the Kodak dataset. Our repro-
duction achieves 0.52%, 0.56%, and -3.32% BD-Rates for the hy-
perprior, autoregressive, and attention models, respectively.

average, when compared to the pre-trained models of Com-
pressAI’s, our reproduction models yield 0.39%, 0.41%,
and -4.11% BD-Rates [57] for the hyperprior, autoregres-
sive, and attention models, respectively. Notably, on the
CLIC dataset, our reproduction models outperform their
pre-trained counterparts by -1.24%, -1.56%, and -5.68%
BD-Rates for the hyperprior, autoregressive, and attention
models, respectively. For the attention model, our repro-
duction model outperforms the pre-trained model on all
three evaluation datasets of Kodak, CLIC, and Tecnick by
-3.32%, -3.33%, and -5.68% BD-Rates, respectively. Note
that in the original attention network [10], the latent is mod-
eled as a mixture of Gaussians with 3 clusters. In Compres-
sAI’s default implementation, this cluster number is simpli-
fied to 1. We follow this latent implementation. The de-

tailed rate-distortion curves for the Kodak dataset are visu-
alized in Fig.8.

9. More details on source entropy models

Herein, the module designs are identical to the latent de-
signs [4, 8, 10, 12, 43], with only minor dimension adjust-
ment to fit X. The details are depicted in Fig.7. For the
attention modules from MLIC++, the depthwise separable
convolution is adopted [56].

10. Regularization with H(U|X) estimation

As shown in Fig.9(a), we further examine the regularization
performance by training compression networks with the fol-
lowing minimization objective:

R+ D + aExlog ¢s(X|X) —log ¢,(U|X)], (32)

~—(H(X|X)-H(U|X))

where an additional entropy model qg,(U|X ) is jointly es-
timated with go(X | X) by maximizing

max Ex[log go(X|X) +log ¢, (U|X)].  (33)

The training procedure follows Algorithm [, consisting of
alternating steps: one step updates the compression net-
work using Eqn.(32), while another step updates the reg-
ularizer using Eqn.(33). The distribution q<p(U|X' ) is mod-
eled as a factorized Gaussian, with its neural architecture
identical to that of the analysis transform Tp. We evalu-
ate this approach on the hyperprior model, with the reg-
ularization factor o set to 0.1 and all other training set-
tings consistent with Sec. 4.1. The corresponding results
are presented in Fig.9(b). As shown in Fig.9(b), introducing
the H(U|X) term only provides a marginal gain (approx-
imately -0.2% BD-Rate) on the CLIC dataset at 0.5 x 10°



steps, while no significant improvement is observed in other
cases. One possible explanation is that learning the distribu-
tion ¢, (U | X) is highly challenging, as it requires training
an additional “encoder” function to accurately map X to
U. Moreover, due to computational complexity considera-
tions, the proposed Algorithm 1 updates the regularization
terms with only one gradient step per iteration. Experiments
reveal that even with this single-step update strategy, the
overall training complexity has already increased from ap-
proximately 28% to 45%. One might suggest reusing the
entire analysis transform 7’4 instead of learning a new map-
ping from X to U to reduce complexity. We have explored
this alternative, but its performance is inferior to the results
presented here.
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Figure 9. (a) Illustration of regularization with an additional
H(U|X) term; (b) Performance evaluation on the hyperprior
model.



