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This supplementary material extends the results pre-
sented in the main manuscript with additional visualizations
and results.

1. Additional Visualizations

To enhance the qualitative analysis of the impact of our ap-
proach, we extend the score curves on the NWPU Cam-
pus dataset outlined in Section 4.5 of the main manuscript
by incorporating the score curves of the original denois-
ing score matching (DSM) method. This addition allows
for a more comprehensive comparative evaluation, shed-
ding light on the differences between our method (ADSM),
which combines autoregressive denoising score matching
with the characteristics of video anomalies, and the original
denoising score matching method. This detailed compari-
son will provide valuable insights into the effectiveness and
advantages of our proposed approach in handling the chal-
lenging and complex VAD task.

The NWPU Campus [1] is the largest and most com-
plex semi-supervised video anomaly detection benchmark
to date. It makes up for the lack of scene-dependent anoma-
lies [12, 13] in the current research field. In the video of
“D013.03” within the NWPU Campus dataset, the cyclist
is a scene-dependent anomaly, which is normal on the road
while abnormal on the square, greatly increasing the dif-
ficulty of video anomaly detection. As shown in Fig. 1,
the score curve of the DSM dramatically fluctuates wher-
ever the cyclist appears. This indicates that simply using
the denoising score matching strategy is not sufficient to
detect such anomalies. In contrast, we propose to embed
the scene information of the input video sequence into our
noise-conditioned score transformer (NCST) to jointly es-
timate a scene-dependent score, modeling the relationships
between video events and scenes. It can be seen in Fig. |
that the score curve rapidly increases when the cyclist ap-
pears on the square while remaining stable at a lower value
when the cyclist appears on the road. This demonstrates that
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our final autoregressive denoising score matching is able
to make a timely scene-dependent detection without false
alarms, greatly enhancing the adaptability and usability of
the video anomaly detection task in smart video surveil-
lance systems.

In the video of “D001_03” within the NWPU Campus
dataset, the person climbing the fence is an obvious mo-
tion anomaly. As shown in Fig. 1, the score curve of the
DSM exhibits a sharp increase upon the occurrence of the
fence climber. Nevertheless, it is observed that the score
curve fails to sustain a consistently high value after the oc-
currence, exhibiting frequent fluctuations. This instabil-
ity raises concerns regarding the likelihood of missed de-
tections or false alarms, highlighting the need for a more
robust and reliable detection mechanism to effectively ad-
dress this issue. In contrast, we propose to assign motion
weights to the score function based on the difference be-
tween the first and last key frames of the input sequence,
guiding our method to focus on the motion consistency in-
herent in videos. Consequently, the score curve generated
by our ADSM exhibits a rapid and sustained increase in
value as soon as the person begins climbing the fence, main-
taining stability throughout the duration of the abnormal
event. This consistent behavior underscores the superior
capability of our method in capturing and comprehending
the motion consistency within videos, thereby enhancing
the accuracy and reliability of video anomaly detection in
dynamic videos.

In the video of “D003_05" within the NWPU Campus
dataset, puppies crossing the road serves as an example of
the appearance anomaly. As shown in Fig. 1, the score curve
generated by the DSM exhibits a sharp increase in both ab-
normal and normal events, indicating a tendency towards
false alarms. In contrast, we compare the denoised data with
the original data to get a difference and aggregate it with
the score function based on the proposed autoregressive de-
noising score matching mechanism, compensating for the
appearance gap via enhancing the perception of low-level
pixel details. The results of the ADSM illustrate that the
score curve experiences a rapid increase when the puppies
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Figure 1. A diagram of the visualization of score curves on the NWPU Campus dataset. “DSM” is the original denoising score matching
method without the combination of the autoregressive strategy and the characteristics of video anomalies. “ADSM” is our final autoregres-
sive denoising score matching method. A higher score represents a higher probability of anomaly. Best viewed in color.

are observed crossing the road, while maintaining a stable,
lower value in other normal events. Therefore, our method
better identifies appearance anomalies without generating
false alarms, equipping the score matching mechanism with
enhanced appearance perception.

We further investigate the distribution of normal and ab-
normal scores generated by two versions of our method
(i.e., the DSM and ADSM) via t-SNE [14]. As shown
in Fig. 2, results from the DSM reveal that normal and
anomaly scores closely cluster together, posing challenges
in accurate detection. This corroborates the motivation dis-
cussed in Section 1 of the main manuscript that the denois-
ing score matching mechanism is blind to anomalies local-
ized in local modes. Conversely, when utilizing our pro-
posed ADSM, the combination of characteristics of video
anomalies and the autoregressive denoising score matching
mechanism leads to a more compact intra-class distribution

and a more spread-out inter-class distribution, facilitating a
clearer distinction between normal and abnormal instances.
This observation underscores the fundamental principle be-
hind the efficacy of our method in effectively separating
anomalies located in local modes.

2. Additional Results
2.1. Model Size

Our noise-conditioned score transformer (NCST) leverages
a series of NCST blocks to establish a flexible architecture,
allowing for varied hidden dimensions and multi-head at-
tention layers. Following ViT [4], we identify three distinct
configurations of our model, each characterized by differ-
ent parameter counts and floating-point operations. More-
over, we present their respective performance on the Shang-
haiTech dataset, evaluating both micro and macro scores.
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Figure 2. t-SNE visualization of the distribution of normal scores and abnormal scores output by our model. “DSM” is the original denois-
ing score matching method without the combination of the autoregressive strategy and the characteristics of video anomalies. “ADSM” is
our final autoregressive denoising score matching method. Best viewed in color.

As shown in Tab. 1, the NCST-S model has a relatively
small amount of parameters and calculations, greatly sav-
ing computing resources with a slight loss of performance.
The NCST-B model (the setting presented in our main
manuscript) has four times the number of parameters and
calculations compared with the NCST-S model, achieving
an average improvement of 3.5% in terms of the micro and
macro scores on the ShanghaiTech dataset. When we con-
tinue to increase the model size and get the NCST-L model,
there is a slight decrease of 1.8% (2.4%) on the Shang-
haiTech dataset in terms of the micro (macro) score. We
analyze that the current size of the dataset may not be suffi-
cient to fully utilize the capabilities of the this large model.
This still underscores the robust scalability exhibited by our
model.

2.2. Patch Size

The patch size typically plays a significant role in model
performance. In our main manuscript, we adhere to the
standard practice in ViT [4] by utilizing 16 x 16 as the
patch size for our model. We conduct an analysis of the
AUC variation on the ShanghaiTech dataset across differ-
ent patch sizes, in Tab. 2. The model configuration em-
ployed is NCST-B, as outlined in Tab. 1, which aligns with
the settings presented in Section 4.1 of the main manuscript.
Our method implements an autoregressive denoising score
matching based on our NCST, in which we develop a patch-
wise objective function and propose a motion weighting
strategy to guide our model focused on the motion consis-
tency of the input video sequences. As shown in Tab. 2, ini-
tially there is an improvement of 2.4% (3.3%) on the Shang-
haiTech dataset in terms of the micro (macro) score when
we increase the patch size from 8 to 16. The larger patch
size contains more complete objects in the input video se-

quences, which improved the model via enhancing the un-
derstanding of more complete spatiotemporal information.
However, when we continue to increase the patch size to
32, the excessive patch size leads to performance degrada-
tion of 7.6% (8.9%) on the ShanghaiTech dataset in terms
of the micro (macro) score. We analyze that the imbal-
ance between static backgrounds and dynamic objects [12]
in the VAD dataset may attribute to the insufficient perfor-
mance. The optimal balance between model capabilities
and spatiotemporal information is achieved with the mid-
dle value of 16 patch size, which is employed in our main
manuscript, delivering the best performance on the Shang-
haiTech dataset with superior micro and macro scores.

2.3. Number of Input Frames

The number of input frames usually has an effect on the
model performance. In our experiments, we just follow the
common setting in action recognition [5, 15, 18] and use
8 frames as the input for our model. We make an analy-
sis of the variation of AUC on the ShanghaiTech dataset for
different numbers of input frames in Tab. 3. The model set-
ting we used is NCST-B described in Tab. 1, which is also
the setting we report in Section 4.1 of the main manuscript.
It can be seen that the performance of our model is not
over-sensitive to this hyperparameter. When the number of
input frames decreases, the difference between the video
frames also decreases, which reduces the difficulty of mod-
eling while limiting the spatiotemporal information of the
input video sequences. Conversely, when the number of
input frames increases, the model is more likely to per-
ceive stronger spatiotemporal relationships in input video
sequences while the difficulty of modeling also increases.
Both the increase and decrease of the performance obtained
by our method do not exceed 2.5% on the ShanghaiTech



Table 1. AUCs (%) obtained by our method for different configurations of the proposed NCST model on the ShanghaiTech dataset.

Model Layer numbers Hidden size ~ Heads  Params (M) FLOPs (G) ShanghaiTech
Micro Macro
NCST-S 2 384 6 331 180.4 81.1 89.6
NCST-B 12 768 12 130.7 712.3 84.5 93.2
NCSTL 24 1024 16 458.3 2511.1 82.7 90.8

Table 2. AUCs (%) obtained by our method for different patch
sizes on the ShanghaiTech dataset.

Patch size 8 16 32
Micro 82.1 84.5 76.9
Macro 89.9 93.2 84.3

Table 3. AUCs (%) obtained by our method for different numbers
of input frames on the ShanghaiTech dataset.

Frame 4 8 12 16
Micro 82.1 84.5 83.9 82.8
Macro 89.9 93.2 92.8 91.1

dataset in terms of the micro and macro scores. The middle
value of 8 used in our main manuscript achieves the best
performance on the ShanghaiTech dataset in terms of the
micro and macro scores, which means a better balance be-
tween the capabilities of the model and spatiotemporal in-
formation of the input video sequence.

2.4. Motion Weighting Strategy

As introduced in Section 3.4 of the main manuscript, the
proposed key frame motion weighting strategy is based on
the video codec theory [8], which holds that the first and
last key frames of a video clip retain key information about
implicit relative relations between appearance and motion.
Considering key frames not only balances the computa-
tional requirements but also motivates our model to ex-
plore and mine the potential spatiotemporal variation re-
lationships therein. We compare our method with several
commonly used weighting methods, including calculating
average inter-frame difference and rank pooling [6] on the
ShanghaiTech dataset in terms of the micro score and macro
score. As shown in Tab. 4, compared to computing the dif-
ference between frames on average, calculating the differ-
ence between key frames yields better results with lower
overhead. As a linear representation method, rank pooling
may constrain the ability of our transformer-based model to
capture non-linear attention in long sequences, limiting its
performance compared to our approach. Notably, we verify
the input data to ensure the absence of the extreme situation
where the first and last frames are exactly the same (result-
ing in zero weight).

Table 4. AUCs (%) of different motion weighting methods on the
ShanghaiTech dataset.

ShanghaiTech
Method Micro Macro
Average 84.1 92.9
Rank pooling [6] 82.9 90.3
Ours 84.5 93.2
2.5. Running Speed

As introduced in Section 4.5 of the main manuscript, we
perform all the experiments on four NVIDIA GeForce RTX
4090 GPUs with the pytorch framework [11]. Our method
is implemented purely on the raw video clip without an
extra feature extractor. Furthermore, we utilize the pow-
erful generative model only for a score rather than high-
fidelity images or videos, which greatly simplifies the de-
noising process. This represents a very small computa-
tional cost. The running time of our ADSM is primar-
ily determined by the size of our noise-conditioned score
transformer. In our setup described in the main manuscript,
our ADSM uses an NCST with 130M parameters and takes
less than 20 milliseconds to process an input sequence of
8 frames, which enables video anomaly detection at around
50 FPS. Even considering the additional consumption of the
object detection model [3, 17], our method is still able to
maintain a speed around 35 FPS, suitable for a real-time
monitoring system typically around 30 FPS. Moreover, we
provide the inference speed and the corresponding perfor-
mance of five representative methods HF2-VAD [9], VABD
[7], LLSH [10], FPDM [16], and SSAE [2] on the Shang-
haiTech dataset in terms of the micro score. As shown
in Tab. 5, our proposed method achieves the best results
(84.5%) while maintaining a competitive running speed.
Notably, the fastest method VABD [7] uses pre-extracted
optical flow that can be slowed down by taking the time of
the optical flow extractor into account. We argue that our
method not only takes the characteristics of video anoma-
lies into consideration but also maintains a stable inference
speed without extra input modality.



Table 5. Running speed (in seconds), frames per second (FPS),
and AUCs (%) of different methods on the ShanghaiTech dataset

during the inference phase.

«®» represents methods using pre-

processed optical flow.

Model Time (s) FPS  Micro (%)
OHF?-VAD [9]  0.0667 15 76.2
OVABD [7] 0.0147 68 78.2
LLSH [10] 0.0392 25.5 77.6
FPDM [16] 0.1282 7.8 78.6
SSAE [2] 0.1096 10.1 80.5
Ours 0.0194 51.5 84.5
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