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Supplementary Material

A. Overview
This supplementary material includes additional details on
benchmark construction, evaluator implementation, and ex-
periment results, which cannot be fully covered in the main
paper due to limited space. In Appendix B, we first in-
troduce more details about the benchmark construction, in-
cluding the definition of eight prompt categories and the in-
struction used in GPT-4. Then, we present more implemen-
tation details about the proposed evaluator, including net-
work details and training strategy in Appendix C. Finally,
we provide additional experimental results to demonstrate
the effectiveness of our metric in Appendix D.

B. More Details on Benchmark Construction
B.1. Definition of Different Prompt Categories
Considering the number of objects and their complexity,
creativity, and relationship, we define eight prompt cate-
gories in our benchmark. The definitions of these categories
are reported as follows:
• Basic. Descriptions about a single object without de-

tailed geometry or appearance details, where some global
properties (e.g., color, shape, material) could be included.
Examples: “A green apple”, “A square table”, and “A
wooden chair”.

• Refined. Descriptions about a single object with one sim-
ple specification of the geometry or appearance details.
Examples: “A yellow rubber duck has only one foot ”, “A
plastic cup with a printed logo”, and “An imperial state
crown of England”.

• Complex. Descriptions about a single object with more
than two detailed specifications of geometry or appear-
ance details. Examples: “A brown teddy bear, fur mat-
ted, one eye missing”, “A turtle standing on its hind legs,
wearing a top hat and holding a cane”, and “An over-
sized, porous, sphere-shaped birdcage, made of woven
golden wires”.

• Fantastical. Descriptions about a single object with high
creativities that are not, or are generally unlikely to be,
found in the real world. Examples: “A frog with a
translucent skin displaying a mechanical heart beating”,
“A white cat has three tails, made of white, purple and
black crystals”, and “A tiger dressed as a doctor”.

• Grouped. Descriptions about multiple objects without
interactions, where some global properties (e.g., color,
shape, material) could be included. Examples: “A de-
licious hamburger and a green apple”, “A red pig and a

huge drum”, and “A round table and a square chair”.
• Action. Descriptions about multiple objects with inter-

action about action relations, where some geometry or
appearance details could be included. Examples: “A hu-
manoid robot with a top hat is playing the cello”, “A black
cat with white feet is sleeping peacefully beside a carved
pumpkin”, and “A dog is eating a red apple with its tail
raised”.

• Spatial. Descriptions about multiple objects with inter-
actions about spatial relations, where some geometry or
appearance details could be included. Examples: “A red
apple on a round ceramic plate”, “A strong football player
wearing a number seven jersey next to a blue soccer”, and
“A blue rose in a crystal, symmetrical vase”.

• Imaginative. Descriptions about multiple objects with in-
teractions, where objects or interactions are not or are
generally unlikely to be found in the real world. Exam-
ples: “A panda with a wizard hat is reading a newspaper”,
“A ghost is eating a golden apple”, and “A raccoon astro-
naut is holding his helmet”.

B.2. Prompt Generation

To ensure the comprehensiveness and diversity of prompts
generated by GPT-4 [11], we define four aspects to consider
during the prompt generation: object categories, geometry
properties, appearance properties, and object interactions.
These aspects are detailed as follows:

• Object Categories. To ensure that the generated prompts
encompass the most common object classes relevant to
text-to-3D tasks, we first establish clear definitions for ob-
ject categories, such as “live beings”, “animals”, “plants”
and so on. This approach ensures prompt diversity and
avoids the generated prompts being limited to a single
category.

• Geometry Properties. To generate more vivid and re-
alistic 3D objects, it is essential to include detailed de-
scriptions of geometry properties in prompts. Objects can
be characterized based on their volume, shape, or size,
including terms such as “symmetrical”, “cylinder”, and
“small”.

• Appearance Properties. Similar to geometry proper-
ties, appearance properties are essential for prompt gen-
eration. Common attributes include colors, which are
frequently used to describe objects’ appearance, and
textures, which capture surface characteristics such as
“smooth”, “rough”, and “furry”. Additionally, materials,
such as “metal”, “glass”, and “fabric”, also play a signifi-
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Figure S1. Training samples used in our subjective experiment.

cant role in defining appearance.
• Object Interactions. Object interactions can be classi-

fied into two types: spatial and action relationships. Spa-
tial relationships utilize terms such as “on” and “below”
to accurately define the positional relationships between
objects. Action relationships describe the actions or be-
haviors of objects, including verbs like “wear”, “watch”,
and “hold”. By integrating these words with different ob-
ject categories, GPT-4 can generate prompts encompass-
ing various interactions.

After defining eight prompt categories and four aspects,
we design a universal template to provide GPT-4 with es-
sential context for the prompt generation task. Detailed in-
structions are shown in Fig. S8 and Fig. S9. Following these
instructions, GPT-4 can gain a foundational understanding
of the task and generate a list of prompts based on evaluator
input. By editing prompt categories and lengths, GPT-4 can
efficiently produce prompts across different categories.

B.3. Mesh Generation and Visualization

In recent years, significant advancements have been made in
3D generative methods. In this paper, we employ DreamFu-
sion [12], Magic3D [7], SJC [15], TextMesh [14], 3DTopia
[4], Consistent3D [17], LatentNeRF [10], and One-2-3-
45++ [8] to generate 3D textured meshes. Here, we provide
a brief introduction of each method.

Figure S2. Illustration of the environment platform.

• DreamFusion pioneers the paradigm of optimizing a
unique 3D representation per text input or image, guided
by powerful pre-trained 2D diffusion models.

• Magic3D introduces a coarse-to-fine optimization strat-
egy with two stages. This approach improves both speed
and quality.

• SJC converts a pre-trained 2D diffusion generative model
on images into a 3D generative model of radiance fields,
without requiring access to any 3D data.

• TextMesh employs a novel way to fine-tune the mesh tex-
ture, removing the effect of high saturation and improving
the details of the output textured mesh.

• 3DTopia is a two-stage text-to-3D generation method.
The first stage uses a diffusion model to quickly gener-
ate candidates. The second stage refines the assets chosen
from the first stage. It can generate high-quality general
3D assets within 5 minutes using hybrid diffusion priors.

• Consistent3D uses deterministic sampling priority to en-
sure that different generated results are visually more con-
sistent and have higher details when generating 3D ob-
jects. Compared to traditional random sampling methods,
this approach reduces variability in generated results, en-
suring that the produced 3D objects align more consis-
tently with the specified text prompt.

• LatentNeRF guides the 3D generation process by en-
coding shape information in latent space. In this way, it
can more effectively generate high-quality textures and
shapes that match specific shapes while preserving de-
tails.

• One-2-3-45++ advances multi-view 3D generation via
an enhanced Zero123 [9] module enabling simultaneous
cross-view attention, alongside a multi-view conditioned
3D diffusion module performing coarse-to-fine textured
mesh prediction over time.
We present additional generated samples along with the

evaluation scores for each method in Fig. S10.

B.4. Subjective Experiment Procedure
Training Session. Before the subjective experiment, we
scale the generated meshes proportionally to ensure that



Table S1. Comparison of the existing text-to-3D datasets. ‘%’ represents the scores are not available.

Benchmark Prompt Categories
Number of

Generative Methods Rating Dimensions
Number of

Annotated Samples
Number of

Rating Score Annotation Type

T
3Bench [3]

Single Object,
Single Object with Surroundings,

Multiple Objects
7

Alignment,
Quality 630 630 × 2 × unknown %

(Absolute Score)

GPTEval3D [16]
Creativity,

Complexity 13

Text-Asset Alignment,
3D Plausibility,
Texture details,

Geometry details,
Texture–geometry coherency

234 pairs 234 × 5 × 3 %
(Preference Score)

MATE-3D

Basic, Refined,
Complex, Fantastical,

Grouped, Action,
Spatial, Imaginative

8

Alignment,
Geometry,
Texture,
Overall

1,280 1,280 × 4 × 21 !
(Absolute Score)

Table S2. Performance comparison with evaluators in GPTEval3D
and T

3Bench.

KRCC Alignment Geometry Texture Overall
HyperScore 0.517 0.572 0.622 0.603
GPTEval3D 0.355 0.356 0.432 0.391

SRCC Alignment Geometry Texture Overall
HyperScore 0.739 0.782 0.811 0.792

T
3Bench-Quality 0.619 0.497 0.494 0.540

T
3Bench-Alighment 0.407 0.366 0.376 0.383

each mesh fits within a cube defined by the range [−1, 1].
To enhance the reliability of the subjective scores, we use 10
samples whose corresponding prompts are excluded from
MATE-3D to train subjects, helping them understand the
rating rules. The training samples are selected to repre-
sent a comprehensive quality range, allowing viewers to
understand the dataset comprehensively. We assign refer-
ence scores to the training samples and present the samples
twice, requiring viewers to score them during the second
viewing. If the scores given by the viewers show a high
correlation with the reference scores, we conclude that they
have grasped the rating principles and can provide reliable
scores. Conversely, if viewers assign biased scores from
the references, we repeat the training procedure until they
provide reasonable results. The 10 training samples are il-
lustrated in Fig. S1.

Experimental Environment. To enable subjects to ob-
serve 3D objects from various viewpoints and provide more
accurate ratings, we employ an interactive approach for
the experiment. Our interactive renderer is developed as
a web application utilizing the Three.js library [6]. To
effectively capture the scene, we employ an orthographic
camera, with its field of view defined by the camera frus-
tum. Subjects can control the camera’s orientation through
mouse movements, which enables them to adjust their view-
points dynamically. To minimize the influence of the back-
ground on the subjects’ evaluation, we set the background
color to gray, specifically implemented using the code

scene.background = newTHREE.Color(0xaaaaaa).
The platform, as illustrated in Fig. S2, allows subjects to
navigate between previous and next samples and rate scores
from four dimensions. The subjective experiment is con-
ducted on 27-inch AOC Q2790PQ monitors with a reso-
lution of 2560×1440 in an indoor laboratory environment
under standard lighting conditions.

Outlier Detection. In total, we generate 1,280 textured
meshes from 160 prompts with eight generative methods.
To mitigate visual fatigue associated with prolonged exper-
iment durations, we randomly divide the 1,280 samples into
10 sessions. To detect outliers during the subjective ex-
periment, each rating session includes one extremely low-
quality sample and one duplicate sample as “trapping sam-
ples”. Consequently, each session comprises 130 samples.
After collecting the subjective scores, we implement two
consecutive steps to identify outliers from the raw data.
First, we identify outliers based on the “trapping samples”
results. If a subject provides a high score that exceeds the
expected threshold for the extremely low-quality sample or
provides significantly different scores for the two duplicate
samples, we exclude the raw scores of the subject from our
analysis. Second, we apply the outlier detection method
described in ITU-R BT.500 [13] to conduct a further exam-
ination, removing any additional outliers identified through
this process. As a result, four outliers are identified and
eliminated from the subjective scores. Finally, we collect
17 scores for each sample.

B.5. Comparison with Other Benchmarks
Previous works [3, 16] have presented some text-to-3D
benchmarks. We compare MATE-3D with the existing
benchmarks from multiple perspectives in Tab. S1. Note
that for the column of “Number of Annotated Samples”,
T

3Bench and MATE-3D provide “Absolute Score” for each
sample, whereas GPTEval3D creates pairs of two sam-
ples and assigns ranking orders, referred to as “Preference
Score” within each pair. The column of “Number of Rat-
ing Scores” is calculated as “Number of Annotated Sam-
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Figure S3. (a) Architecture of the mapping head; (b) Architecture of the hypernetwork.

ples” × “Number of Rating Dimensions” × “Subject Num-
ber for Each Sample”. Additionally, since the scores for
T

3Bench and GPTEval3D are not publicly available, we
cannot evaluate the performance of objective metrics on
these two benchmarks.

From Tab. S1, it is clear that our benchmark presents sev-
eral noticeable advantages. First, we incorporate a broader
range of prompt categories, ensuring diversity and repre-
sentativeness in the prompt generation. Second, we intro-
duce four rating dimensions, offering a more comprehen-
sive assessment of sample quality compared to T

3Bench.
Although GPTEval3D employs more dimensions, it only
provides preferences for a limited number of pairs. Third, to
promote robust and unbiased scoring, we annotate all gen-
erated samples and recruit 21 subjects to rate 1,280 samples
across four dimensions. Additionally, we apply comprehen-
sive outlier detection to refine the MOS, reducing the impact
of anomalous ratings. We will make the MOS publicly ac-
cessible, facilitating further validation and experimentation
by other researchers.

We further compare the evaluators proposed in GPTE-
val3D and T3Bench with HyperScore. i) Comparion with
GPTEval3D: The evaluator GPTEval3D is based on GPT-
4v, which can only rank generated results from the same
prompt in terms of five dimensions. However, directly rank-
ing two samples in these methods can only know which one
is better, but not how much better. In comparison, the pro-
posed evaluator provides absolute scores for different sam-
ples, which can not only compare samples generated from
different prompts but also know how much the quality dif-

ference between the two samples is. We report the KRCC
results of HyperScore and GPTEval3D on MATE-3D in the
first table of Tab. S2, we can see HyperScore perform bet-
ter. ii) Comparion with T 3Bench: T 3Bench proposes two
separate evaluators for quality and alignment measurement,
which cannot handle multi-dimensional quality assessment.
We report the SRCC results of HyperScore and two eval-
uators in T

3Bench on MATE-3D in the second table of
Tab. S2, we can see HyperScore can evaluate different di-
mensions more effectively than two evaluators in T 3Bench.

C. More Details on Evaluator Implementation

C.1. Network Details

Utilization of Pre-trained Model. The used visual encoder
in HyperScore is Vision Transformer [2] with 16 × 16 patch
embeddings (namely ViT-B/16) in CLIP-Visual. The tex-
tual encoder is also the pre-trained transformer in CLIP-
Textual. The visual, textual, and condition features all have
a size of D = 512 while the quality feature has a size of
Dq = 224.

Architecture of HyperNetwork and Mapping Head.
In the evaluator, we use a hypernetwork π (⋅) to generate the
parameter weights for a mapping head ψ (⋅). We illustrate
the network structure of π (⋅) and ψ (⋅) in Fig. S3. Seeing
Fig. S3a, the mapping head contains four fully connected
(denoted by FC1-FC4) layers and takes the quality feature
as input to generate the quality score. The input sizes of four
FC layers are 224, 112, 56, and 28 as shown in Tab. S3. To
inject the dimension-related information into the mapping



MOS: 7.00 / 4.68 / 5.76 / 5.57

MultiScore: 5.47 / 5.03  / 4.86 / 4.97

HyperScore: 6.08 / 4.96  / 5.48 / 5.24

CLIPScore: 0.23 / 0.23  / 0.23 / 0.23

A candleholder made of wrought iron

MOS: 5.17 / 3.68 / 2.90 / 3.50

MultiScore: 3.23 / 2.34 / 2.53 / 2.42

HyperScore: 5.30 / 3.35  / 3.07 / 3.51

CLIPScore: 0.19 / 0.19 / 0.19 / 0.19

A lion rider is riding a motorcycle

MOS: 6.63 / 5.39  / 4.68 / 5.45

MultiScore: 5.33 / 5.00  / 5.05 / 4.99

HyperScore: 6.12 / 4.73 / 4.27 / 5.37

CLIPScore: 0.26 / 0.26  / 0.26 / 0.26

A delicious hamburger

MOS: 4.94 / 4.15  / 4.12 / 4.11

MultiScore: 6.02 / 5.17  / 5.19 / 5.28

HyperScore: 5.28 / 4.42  / 4.32 / 4.31

CLIPScore: 0.14 / 0.14 / 0.14 / 0.14

A robot butler is holding a tray with 

a crystal goblet

MOS: 5.58 / 5.36 / 4.52 / 5.05

MultiScore: 6.06 / 5.37  / 5.39 / 5.45

HyperScore: 5.55 / 5.29  / 4.24 / 4.99

CLIPScore: 0.20 / 0.20  / 0.20 / 0.20

A paintbrush with bristles made 

of tiny flower petals

MOS: 7.31 / 6.59  / 6.90 / 6.86

MultiScore: 5.95 / 5.83  / 5.58 / 5.56

HyperScore: 6.71 / 5.90  / 6.38 / 6.34

CLIPScore: 0.23 / 0.23  / 0.23 / 0.23

A golden lamp with an intricate bird and flower 

motif, and a glossy, amber-colored glass shade

Figure S4. Additional exemplary samples with their MOSs and the predicted scores of different metrics. The four scores in each row
denote alignment, geometry, texture, and overall quality, respectively.

head, we use the hypernetwork shown in Fig. S3b to gener-
ate the weights and biases for FC layers. More specifically,
the condition feature after transformation is fed into four in-
dependent hyper modules, and each hyper module will out-
put the weight and bias for the corresponding FC layer in
the mapping head. We also declare the feature size for the
weight and bias generated of the FC1 layer in Tab. S3.

C.2. Loss Function
Given K evaluation dimensions, we finally obtain {q̂i}Ki=1
as predictions. Denoting the subjective MOS as {qi}Ki=1, we
first define a regression loss as:

Lreg =
1

KB

B

∑
b=1

K

∑
i=1

(q̂bi − q
b
i )

2
, (1)

where the superscript “b” denotes the b-th samples in a mini-
batch with the size of B.

Considering that different evaluation dimensions have
various focuses, to avoid learning homogeneous features,
we define a feature disentangling loss for the condition fea-

tures {f ic}
K

i=1
:

Ldis =
2

K (K − 1) ∑
i≠j

max (ϵ, cos (f ic, f jc )) , (2)

where cos (⋅) denotes the cosine similarity between two
features; ϵ represents the margin that controls the diver-
gence among features and we set ϵ = 0 in the implementa-
tion. By introducing Ldis, we can increase the discrepancy
among different evaluation dimensions during the network
training.

Finally, the overall loss function for training is defined
as:

Table S3. The feature size of each module in the hypernetwork
and mapping head.

Module Layer Input Size Output Size

Mapping Head

FC1 Layer 224 112

FC2 Layer 112 56

FC3 Layer 56 28

FC4 Layer 28 1

Transformation FC Layer 512 5,488

Reshape 5,488 112 × 7 × 7

FC1 Weight Generation 3 × 3 Conv 112 × 7 × 7 512 × 7 × 7

Reshape 512 × 7 × 7 224 × 112

FC1 Bias Generation Global Avg Pool 112 × 7 × 7 112 × 1 × 1

FC Layer 112 112

L = Lreg + λLdis, (3)

where λ is the weighting factor, we simply set λ = 1.

C.3. Training Strategy

We train the proposed HyperScore on MATE-3D for 30
epochs with a batch size of 8. During the training and test-
ing process, all rendered images are resized into the reso-
lution of 224 × 224. We use the Adam [5] optimizer with
weight decay 1e − 4. The learning rate is set separately as
2e−6 and 2e−4 for the pre-trained visual encoder and other
parts (note that the textual encoder is frozen) and is reduced
by a rate of 0.9 every 5 epochs.



A wooden cabin with a finely crafted stone chimney, detailed log walls, and a delicately carved wooden door

A potted succulent with plump, fleshy, blue-green leaves edged in red and planted in a terracotta pot

Alignment Geometry Texture Overall

Figure S5. Visualization for the weight maps used for conditional feature fusion.

D. Additional Experimental Results

D.1. Visualization

We provide additional qualitative samples in Fig. S4 for vi-
sualization. From the figure, we can observe that Hyper-
Score presents more accurate predictions. In comparison,
MultiScore usually assigns similar scores across different
dimensions, making it challenging for users to determine
which factor impacts visual perception more.

Furthermore, we visualize the weight maps used for con-
ditional feature fusion in Fig. S5. From the figure, we can
observe that the weight maps differ across evaluation di-
mensions, demonstrating that the condition features con-
tribute to distinguishing these dimensions. Meanwhile, we
notice that the weight maps for the geometry evaluation
have larger element values at the edges of objects, which
may help to seize the shapes better. In comparison, the
overall evaluation exhibits a more uniform distribution of
the weight maps, probably because it needs to consider var-
ious factors during the evaluation process.

To validate the evaluation ability for ground truth data,
we download 2000 meshes from Objaverse [1]and use Hy-
perScore to access their quality. The average scores for four
dimensions are [7.9, 7.6, 6.7, 7.4], which is generally higher
than the 3D generation quality. Fig. S6 illustrates two evalu-
ated examples. There also exist relatively low-quality sam-
ples in Objaverse such as “horse”.

9.05/9.51/8.04/9.10 7.25/6.58/6.15/6.72

“mug” “horse”

Figure S6. Evaluation results for examples in Objaverse.

D.2. Additional Ablation Studies

Ablation Study for the Aggregation Strategy. We test
the performance of HyperScore with different aggregation
strategies between the visual and textual features. Except
for the used element-wise multiplication (denoted by ⊙),
we choose two other strategies, i.e., addition (denoted by
+) and concatenation (denoted by ⊕). According to the re-
sults in Tab. S4, we can see that the element-wise multipli-
cation performs best on all evaluation dimensions, and the
addition and concatenation both provide relatively inferior
performance, which justifies our choice for the aggregation
strategy.

Ablation Study for the Viewpoint Count. To perform
evaluation, we render textured meshes into M = 6 images
from six perpendicular viewpoints (i.e., along the positive
and negative directions of the x, y, and z axes). We fur-
ther test the performance of HyperScore under different M
values to investigate the influence of the number of view-



Table S4. Ablation study for the aggregation strategy between vi-
sual and textual features. Results of SRCC are reported.

Aggregation Alignment Geometry Texture Overall

f
i
v,c + f

eot
t 0.708 0.769 0.783 0.767

f
i
v,c ⊕ f

eot
t 0.717 0.766 0.789 0.767

f
i
v,c ⊙ f

eot
t 0.739 0.782 0.811 0.792

points and report the results in Tab. S5. Note that the cor-
responding camera locations of different M are declared
in Tab. S6. From Tab. S5, it can be observed that as the
M value increases, the performance initially improves and
then decreases. The reason may be that increasing M pro-
vides more information for a better prediction when M is
a small number. However, when M becomes large, the in-
crease in M can affect performance to some extent due to
information redundancy. Meanwhile, a largerM also incurs
higher computational complexity. Therefore, to achieve the
balance between performance and complexity, we consider
M = 6 as a suitable choice.

Ablation Study for the Prompt Design. In our imple-
mentation, to obtain multiple condition features, we first
transform the meta texts (i.e., “alignment quality”, “geom-
etry quality”, “texture quality”, “overall quality”) into text
tokens and then insert them into the front of K learnable
prompts with L = 12 tokens. Here we further explore the
impact of L on the performance and illustrate the results
in Fig. S7. From the figure, we see that HyperScore per-
forms the best with L = 12. Short prompts may constrain
the learning space, potentially leading to the loss of cru-
cial information. Conversely, too long prompts might in-
troduce unnecessary noise, which may obscure important
information and degrade performance. Therefore, balanc-
ing the prompt length is critical to optimizing the metric
performance.

We further replace these learnable prompts with fixed
tags and test the performance of the case. Specifically, we
define the tags for the four quality dimensions as:
• Alignment: “quantity, attributes, position, location”;
• Geometry: “shape, size, hole, edge, surface”;
• Texture: “color, material, clarity, texture, contrast”;
• Overall: “quantity, attributes, position, location, shape,

size, hole, edge, surface, color, material, clarity, texture,
contrast”.

The performance of the fixed tags is reported in Tab. S7,
where we also report the performance of only using learn-
able tokens without the meta texts (denoted by “Learnable
w/o meta”). We can observe that the learnable prompts with
the meta texts outperform the fixed tags and alleviate the
need for meticulous prompt design. Meanwhile, introduc-
ing the meta texts also benefits network optimization.

Ablation Study for the Loss Function. The proposed

Table S5. Ablation study for the number of rendered viewpoints.
Results of SRCC are reported.

M Alignment Geometry Texture Overall

4 0.716 0.755 0.790 0.766
6 0.739 0.782 0.811 0.792
9 0.737 0.780 0.810 0.790
12 0.724 0.784 0.805 0.784
16 0.724 0.784 0.805 0.784

Table S6. Camera locations of different view counts.

M Elevation Angle Azimuth Angle

4 −60◦, 60◦ 0
◦
, 180

◦

9 −60◦, 0◦, 60◦ 0
◦
, 120

◦
, 240

◦

12 −60◦, 0◦, 60◦ 0
◦
, 90

◦
, 180

◦
, 270

◦

16 −60◦, −30◦, 30◦, 60◦ 0
◦
, 90

◦
, 180

◦
, 270

◦

6 (0◦, 0◦) , (0◦, 90◦) , (0◦, 180◦) , (0◦, 270◦) , (90◦, 0◦) , (−90◦, 0◦)

4 8 12 16 20
Token Number

0.66

0.7

0.74

0.78

0.82

S
R

C
C
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Geometry
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Overall

Figure S7. Performance comparison of the learnable prompt
length.

network is trained using the regression loss Lreg, and the
feature disentangling loss Ldis. We evaluate the effect
of each loss function and report the results in Table S8.
From the table, we can see that only utilizing Lreg can
also achieve remarkable performance while Ldis benefits
the evaluations of all dimensions. Considering Ldis only
measures the linear similarity between features, one pos-
sible avenue for further improvement is to minimize non-
linear dependence between two features, such as mutual in-
formation.

Ablation Study for the Input Image Type. The pro-
posed network only uses texture rendering as input. We
further test the impact of normal maps on model perfor-
mance and reported the SRCC results in Tab. S9. It seems
that feeding the normal maps into our model does not bring



Table S7. Ablation study for the prompt type. Results of SRCC
are reported.

Prompt Type Alignment Geometry Texture Overall

Fixed 0.732 0.778 0.794 0.782
Learnable w/o meta 0.725 0.772 0.802 0.784

Learnable 0.739 0.782 0.811 0.792

Table S8. Ablation study for the loss function. Results of SRCC
are reported.

Loss Alignment Geometry Texture Overall

Lreg 0.728 0.769 0.797 0.782
Lreg + Ldis 0.739 0.782 0.811 0.792

much improvement even for geometry evaluation, which is
consistent with the conclusion in GPTEval3D. The reason
for this may be that the backbones are trained on natural
images rather than normal maps, so simply merging normal
information impairs the performance.

Ablation Study for the Rotation Angle. A good 3D
evaluation metric should be robust to changes of scale and
viewpoint. HyperScore has scale invariance because the
meshes are scaled into the unit ball before rendering. Mean-
while, HyperScore is robust to rotation because the training
samples are in different poses. We report the performance
under different azimuth angle in Tab. S10, where the results
are relatively stable.

D.3. Performance Comparison on Different Prompt
Categories

In this section, we test the performance of different met-
rics on eight prompt categories and report the results in
Tab. S11. For the metrics that need fine-tuning, we per-
form a leave-one-category-out evaluation, that is, testing on
one category while training on the other seven categories,
which can validate the generalization performance for un-
known scenes. From the table, we have the following ob-
servations: i) HyperScore achieves the best performance
on the four dimensions of almost all prompt categories,
demonstrating its sensitivity to fine-grained scenes. In con-
trast, although some metrics work well on partial categories
(e.g., ImageReward on Basic and ViT+FT on Spatial), they
may fail in other cases (e.g., ImageReward on Complex and
ViT+FT on Basic). ii) Almost all metrics perform better
when evaluating single object generation than multiple ob-
ject generation. This may be because these metrics do not
model the specific relationships between objects well. iii)
For the sub-categories of single and multiple object genera-
tion, most metrics perform best on Basic and Grouped, re-
spectively. It is reasonable because the evaluation needs to
incorporate more factors when measuring complex scenes

Table S9. Ablation study for the input image types. Results of
SRCC are reported.

SRCC Alignment Geometry Texture Overall

Texture 0.739 0.782 0.811 0.792
Normal 0.663 0.740 0.722 0.732

Texture + Normal 0.684 0.749 0.777 0.749

Table S10. Ablation study for the rotation angles. Results of
SRCC are reported.

SRCC Alignment Geometry Texture Overall

- 0.739 0.782 0.811 0.792
30

◦ 0.719 0.783 0.800 0.789
45

◦ 0.723 0.789 0.802 0.793
60

◦ 0.721 0.787 0.801 0.791

and relationships, which presents challenges for the exist-
ing metrics.

D.4. Performance Comparison on Different Gener-
ative Methods

In this section, we test the performance of different met-
rics on eight generative methods and report the results in
Tab. S12. For the metrics that require fine-tuning, we per-
form a leave-one-method-out evaluation, that is, testing on
one generative method while training on other seven meth-
ods, which can validate the generalization performance for
unknown generative methods. From the table, we have the
following observations: i) HyperScore achieves the best
performance on the four dimensions of almost all genera-
tive methods, demonstrating its generalization capability to
new generative methods. In contrast, other metrics show in-
consistent results across different methods. ii) Almost all
fine-tuned metrics exhibit a noticeable decline in perfor-
mance when evaluating the two recent methods, 3DTopia
and One-2-3-45++. This may be because the two meth-
ods present different distortion patterns compared to other
methods. More specifically, 3DTopia tends to generate a
single object, leading to comparatively lower scores in mul-
tiple object generation. One-2-3-45++ tends to generate
flatter geometric structures and blurry textures. These de-
formations, which are not seen during training, are very
challenging for evaluation. In contrast, fine-tuned metrics
work well on DreamFusion because many other methods
inherit DreamFusion’s paradigm and generate similar pat-
terns. Therefore, it is important to consider the generaliza-
tion towards new generative methods when designing text-
to-3D evaluators.
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Table S11. Performance comparison (in terms of SRCC) of different evaluators on eight prompt categories.

Metric Alignment
Basic Refined Complex Fantastic Grouped Action Spatial Imaginative

CLIPScore 0.574 0.592 0.407 0.421 0.492 0.434 0.404 0.591
BLIPScore 0.640 0.520 0.479 0.423 0.590 0.476 0.577 0.540

Aesthetic Score 0.221 0.285 0.283 0.051 0.053 0.086 0.013 0.062
ImageReward 0.775 0.672 0.544 0.528 0.631 0.622 0.626 0.608
DreamReward 0.671 0.597 0.427 0.424 0.483 0.454 0.448 0.491

HPS v2 0.597 0.348 0.146 0.388 0.562 0.250 0.407 0.518
CLIP-IQA 0.058 0.144 0.082 0.127 0.042 0.006 0.086 0.114
Q-Align 0.349 0.365 0.326 0.255 0.224 0.212 0.023 0.111

ResNet50 + FT 0.625 0.603 0.582 0.601 0.548 0.429 0.562 0.475
ViT-B + FT 0.552 0.533 0.622 0.519 0.609 0.623 0.656 0.483

SwinT-B + FT 0.626 0.541 0.651 0.536 0.455 0.508 0.570 0.556
DINO v2 + FT 0.669 0.649 0.720 0.665 0.643 0.651 0.594 0.598

MultiScore 0.680 0.693 0.710 0.621 0.655 0.615 0.625 0.580
HyperScore 0.819 0.690 0.733 0.705 0.701 0.681 0.637 0.691

Metric Geometry
Basic Refined Complex Fantastic Grouped Action Spatial Imaginative

CLIPScore 0.575 0.570 0.438 0.404 0.496 0.503 0.479 0.602
BLIPScore 0.667 0.491 0.496 0.398 0.556 0.510 0.611 0.574

Aesthetic Score 0.244 0.279 0.268 0.053 0.164 0.041 0.088 0.028
ImageReward 0.790 0.545 0.558 0.467 0.532 0.588 0.585 0.600
DreamReward 0.691 0.495 0.473 0.395 0.465 0.422 0.469 0.497

HPS v2 0.617 0.355 0.218 0.364 0.504 0.334 0.423 0.544
CLIP-IQA 0.107 0.215 0.178 0.133 0.092 0.107 0.199 0.029
Q-Align 0.423 0.469 0.439 0.334 0.444 0.396 0.111 0.079

ResNet50 + FT 0.693 0.671 0.712 0.655 0.641 0.491 0.638 0.515
ViT-B + FT 0.692 0.643 0.752 0.568 0.704 0.598 0.700 0.552

SwinT-B + FT 0.720 0.618 0.738 0.579 0.558 0.559 0.637 0.622
DINO v2 + FT 0.81 0.752 0.815 0.749 0.741 0.769 0.623 0.619

MultiScore 0.733 0.753 0.802 0.670 0.727 0.625 0.723 0.634
HyperScore 0.862 0.745 0.838 0.742 0.776 0.690 0.736 0.738

Metric Texture
Basic Refined Complex Fantastic Grouped Action Spatial Imaginative

CLIPScore 0.620 0.616 0.472 0.442 0.514 0.519 0.528 0.631
BLIPScore 0.707 0.556 0.586 0.458 0.543 0.507 0.665 0.584

Aesthetic Score 0.218 0.310 0.306 0.108 0.257 0.053 0.108 0.030
ImageReward 0.800 0.597 0.596 0.510 0.505 0.606 0.626 0.618
DreamReward 0.697 0.529 0.460 0.446 0.425 0.449 0.514 0.523

HPS v2 0.620 0.359 0.217 0.370 0.508 0.376 0.464 0.584
CLIP-IQA 0.128 0.228 0.230 0.215 0.111 0.165 0.223 0.023
Q-Align 0.469 0.532 0.485 0.425 0.524 0.474 0.231 0.211

ResNet50 + FT 0.721 0.703 0.733 0.658 0.654 0.686 0.553 0.477
ViT-B + FT 0.702 0.682 0.782 0.619 0.721 0.692 0.668 0.603

SwinT-B + FT 0.747 0.617 0.770 0.598 0.580 0.624 0.666 0.652
DINO v2 + FT 0.818 0.765 0.842 0.729 0.751 0.777 0.692 0.674

MultiScore 0.776 0.778 0.843 0.671 0.735 0.695 0.747 0.691
HyperScore 0.880 0.792 0.852 0.745 0.807 0.761 0.746 0.732

Metric Overall
Basic Refined Complex Fantastic Grouped Action Spatial Imaginative

CLIPScore 0.590 0.587 0.441 0.433 0.497 0.519 0.473 0.621
BLIPScore 0.678 0.508 0.502 0.433 0.570 0.507 0.626 0.579

Aesthetic Score 0.244 0.295 0.305 0.056 0.166 0.053 0.059 0.021
ImageReward 0.793 0.588 0.572 0.504 0.569 0.606 0.616 0.617
DreamReward 0.689 0.536 0.467 0.428 0.468 0.452 0.488 0.513

HPS v2 0.623 0.347 0.200 0.380 0.530 0.376 0.427 0.537
CLIP-IQA 0.096 0.202 0.163 0.163 0.064 0.165 0.155 0.023
Q-Align 0.424 0.465 0.439 0.345 0.406 0.349 0.131 0.09

ResNet50 + FT 0.690 0.675 0.695 0.640 0.611 0.608 0.508 0.512
ViT-B + FT 0.670 0.640 0.739 0.567 0.664 0.679 0.613 0.552

SwinT-B + FT 0.710 0.598 0.732 0.572 0.519 0.590 0.620 0.616
DINO v2 + FT 0.786 0.735 0.816 0.718 0.704 0.737 0.648 0.622

MultiScore 0.734 0.748 0.811 0.665 0.699 0.656 0.694 0.643
HyperScore 0.865 0.760 0.841 0.750 0.759 0.730 0.717 0.756



Table S12. Performance comparison (in terms of SRCC) of different evaluators on eight generative methods.

Metric Alignment
DreamFusion Magic3D SJC TextMesh Consistent3D LatentNeRF 3DTopia One-2-3-45++

CLIPScore 0.500 0.337 0.514 0.356 0.242 0.431 0.411 0.361
BLIPScore 0.550 0.390 0.520 0.443 0.337 0.527 0.502 0.337

Aesthetic Score 0.076 0.092 0.088 0.074 0.057 0.029 0.361 0.074
ImageReward 0.677 0.538 0.585 0.610 0.508 0.632 0.613 0.547
DreamReward 0.534 0.396 0.333 0.545 0.283 0.324 0.577 0.464

HPS v2 0.497 0.275 0.316 0.420 0.249 0.295 0.340 0.267
CLIP-IQA 0.223 0.163 0.040 0.179 0.023 0.122 0.094 0.137
Q-Align 0.079 0.093 0.096 0.093 0.021 0.231 0.076 0.13

ResNet50 + FT 0.689 0.508 0.450 0.530 0.430 0.401 0.259 0.222
ViT-B + FT 0.726 0.582 0.475 0.652 0.389 0.396 0.376 0.155

SwinT-B + FT 0.722 0.560 0.347 0.649 0.442 0.462 0.148 0.223
DINO v2 + FT 0.791 0.633 0.609 0.72 0.501 0.472 0.45 0.259

MultiScore 0.784 0.670 0.657 0.597 0.672 0.493 0.365 0.415
HyperScore 0.846 0.754 0.724 0.816 0.724 0.697 0.599 0.573

Metric Geometry
DreamFusion Magic3D SJC TextMesh Consistent3D LatentNeRF 3DTopia One-2-3-45++

CLIPScore 0.511 0.323 0.493 0.343 0.226 0.418 0.360 0.269
BLIPScore 0.549 0.356 0.537 0.431 0.328 0.553 0.426 0.316

Aesthetic Score 0.159 0.156 0.088 0.051 0.015 0.005 0.452 0.367
ImageReward 0.665 0.461 0.588 0.552 0.433 0.555 0.503 0.421
DreamReward 0.513 0.369 0.363 0.533 0.237 0.333 0.502 0.394

HPS v2 0.506 0.299 0.311 0.429 0.252 0.346 0.309 0.331
CLIP-IQA 0.202 0.099 0.014 0.142 0.026 0.085 0.099 0.078
Q-Align 0.022 0.048 0.118 0.019 0.01 0.321 0.073 0.449

ResNet50 + FT 0.707 0.537 0.482 0.545 0.443 0.439 0.429 0.358
ViT-B + FT 0.743 0.563 0.582 0.629 0.375 0.466 0.546 0.215

SwinT-B + FT 0.729 0.529 0.382 0.602 0.434 0.525 0.369 0.184
DINO v2 + FT 0.775 0.624 0.681 0.73 0.554 0.603 0.69 0.471

MultiScore 0.741 0.620 0.595 0.585 0.581 0.446 0.588 0.418
HyperScore 0.821 0.717 0.703 0.773 0.657 0.708 0.683 0.653

Metric Texture
DreamFusion Magic3D SJC TextMesh Consistent3D LatentNeRF 3DTopia One-2-3-45++

CLIPScore 0.502 0.406 0.509 0.393 0.259 0.434 0.384 0.258
BLIPScore 0.542 0.400 0.532 0.462 0.330 0.536 0.473 0.298

Aesthetic Score 0.141 0.122 0.095 0.020 0.003 0.047 0.450 0.356
ImageReward 0.671 0.489 0.573 0.568 0.435 0.535 0.543 0.420
DreamReward 0.498 0.377 0.364 0.517 0.251 0.281 0.533 0.364

HPS v2 0.516 0.295 0.330 0.450 0.266 0.307 0.367 0.307
CLIP-IQA 0.195 0.101 0.024 0.119 0.006 0.169 0.093 0.007
Q-Align 0.018 0.072 0.19 0.021 0.024 0.388 0.187 0.44

ResNet50 + FT 0.702 0.532 0.450 0.553 0.421 0.432 0.395 0.412
ViT-B + FT 0.735 0.606 0.572 0.636 0.392 0.483 0.492 0.220

SwinT-B + FT 0.734 0.524 0.374 0.617 0.459 0.519 0.340 0.171
DINO v2 + FT 0.792 0.635 0.659 0.736 0.563 0.581 0.663 0.423

MultiScore 0.755 0.634 0.603 0.598 0.593 0.472 0.610 0.448
HyperScore 0.823 0.736 0.694 0.775 0.702 0.694 0.613 0.623

Metric Overall
DreamFusion Magic3D SJC TextMesh Consistent3D LatentNeRF 3DTopia One-2-3-45++

CLIPScore 0.506 0.342 0.517 0.362 0.208 0.428 0.399 0.330
BLIPScore 0.548 0.380 0.553 0.443 0.300 0.543 0.473 0.347

Aesthetic Score 0.118 0.149 0.066 0.005 0.001 0.029 0.434 0.242
ImageReward 0.678 0.504 0.602 0.577 0.440 0.572 0.555 0.517
DreamReward 0.522 0.391 0.356 0.548 0.237 0.332 0.544 0.462

HPS v2 0.507 0.291 0.337 0.436 0.241 0.318 0.336 0.322
CLIP-IQA 0.206 0.135 0.023 0.156 0.005 0.111 0.104 0.028
Q-Align 0.038 0.013 0.154 0.024 0.048 0.297 0.124 0.327

ResNet50 + FT 0.703 0.543 0.470 0.535 0.525 0.432 0.357 0.302
ViT-B + FT 0.731 0.597 0.561 0.635 0.388 0.439 0.460 0.190

SwinT-B + FT 0.733 0.567 0.363 0.639 0.441 0.499 0.297 0.230
DINO v2 + FT 0.791 0.65 0.686 0.724 0.543 0.567 0.61 0.363

MultiScore 0.769 0.659 0.635 0.597 0.613 0.451 0.508 0.444
HyperScore 0.839 0.745 0.730 0.794 0.698 0.718 0.638 0.634



Please assist us in creating a set of text prompts for text-to-3D generation. To ensure diversity and comprehensiveness in the prompts, the content should 
focus on the following four aspects. Here, we provide the definitions below:

1. Object categories:
- Living Beings: Humans, animals, mythical creatures, insects, aquatic life
- Plants: Trees, flowers, bushes, grass, aquatic plants
- Buildings and Structures: Houses, skyscrapers, bridges, tunnels, castles
- Vehicles: Cars, bikes, planes, boats, spacecraft
- Furniture: Chairs, tables, sofas, shelves, beds
- Electronics: Phones, computers, cameras, kitchen appliances
- Household Items: Utensils, decor, tools, containers
- Clothing and Accessories: Dresses, shoes, jewelry, hats, bags
- Abstract Objects: Geometric shapes, artistic sculptures
- Natural Elements: Fire, water, rocks, clouds
- Food and Beverages: Fruits, vegetables, dishes, drinks
2. Geometry properties:
- Volume: Specify if the object is hollow, solid, porous, or layered.
- Symmetry: Define if the object should be symmetrical, asymmetrical, or radially symmetrical.
- Contours: Indicate if the contours should be smooth, jagged, irregular, or undulating.
- Internal Structures: State if the inside should be empty, compartmentalized, or multi-layered.
- Shape: Mention specific geometric shapes that should be part of or inspire the object, e.g., cone, cylinder, sphere.
- Size: Small, medium, large, specific dimensions
3.Appearance properties:
- Colors: Specific colors, patterns, gradients
- Materials: Wood, metal, glass, fabric, stone
- Textures: Smooth, rough, furry, scaly
- Finish: Glossy, matte, translucent, opaque
- State: New, old, worn, pristine
4. Object interaction:
- Spatial relation: the orientation or movement involved in the interaction, describing where the subject and object are in relation to each other. e.g. toward, 
above, below, near to, on the left/right/top/bottom of
- Action relation: Specific verbs representing interactions between subjects and objects, e.g. wear, watch, speak to, hold, run, jump, kiss, sit on, stand on, walk 
with, play with

Then, we will give you some more tips and requirements for the prompt creation. Here, we will present different categories for single object generation and 
multiple object generation, respectively.

For single object generation, we define four categories: 

1. Basic: descriptions about a single object without detailed geometry or appearance details, where some global properties (e.g., color, shape, material) could 
be included. Here are examples: "A green apple", "A humanoid robot”, ""A square table”, “A wooden chair”.
2. Refined: descriptions about a single object with one simple specification of the geometry or appearance details. Here are examples: “A photo of a black 
bird", “A yellow rubber duck has only one foot ",  “A plastic cup with a printed logo”, “An imperial state crown of England".
3. Complex: descriptions about a single object with more than two detailed specifications of geometry or appearance details. Here are examples: “A brown 
teddy bear, fur matted, one eye missing”, “A turtle standing on its hind legs, wearing a top hat and holding a cane”, “An oversized, porous, sphere-shaped 
birdcage, made of woven golden wires”.
4. Fantastical: descriptions about a single object with high creativities that are not, or are generally unlikely to be, found in the real world. Here are 
examples: “A frog with a translucent skin displaying a mechanical heart beating”, “A squirrel-octopus hybrid”, “A white cat has three tails, made of white, 
purple and black crystals”, “A tiger dressed as a doctor”.

For multiple object generation, we define four categories:

1. Grouped: descriptions about multiple objects without interactions, where some global properties (e.g., color, shape, material) could be included. Here are 
examples: “A delicious hamburger and a green apple”, “A red pig and a huge drum”, “A round table and a square chair”. 
2. Action: descriptions about multiple objects with interaction about action relations, where some geometry or appearance details could be included. Here are 
examples: “A humanoid robot with a top hat is playing the cello”, “A black cat with white feet is sleeping peacefully beside a carved pumpkin”, “A dog is eating a 
red apple with its tail raised”.
3. Spatial: descriptions about multiple objects with interactions about spatial relations, where some geometry or appearance details could be included. Here 
are examples: “A red apple on a round ceramic plate”, “A strong football player wearing a number seven jersey next to a blue soccer”, “A blue rose in a crystal, 
symmetrical vase”.
4. Imaginative: descriptions about multiple objects with interactions, where objects or interactions are not, or are generally unlikely to be found in the real 
world. Here are examples: “A panda with a wizard hat is reading a newspaper”, “A ghost is eating a golden apple”, “A lion wearing a crown is painting with a 
glowing paintbrush”, “A raccoon astronaut is holding his helmet”.

Try to understand the requirement first, before I provide some more information.

Got it! You've outlined a detailed framework with distinct categories, geometry and appearance properties, and types of interactions for both single and 
multiple object generation. Here's a quick summary to confirm my understanding of what you need:

Object Categories: Diverse sets of real and abstract objects—ranging from living beings to food.
Geometry Properties: Details like symmetry, contours, shape, and volume to define the structural features.
Appearance Properties: Including colors, materials, textures, and finish to dictate the look and feel of objects.
Object Interaction: Focus on spatial and action-related interactions between objects, especially for multiple object generation.
Then, the challenges break down as follows:

Single Object Generation:
Basic: Simple object descriptions with minimal detail.
Refined: One additional property for a bit more complexity.
Complex: Multiple geometry or appearance properties for detailed descriptions.
Fantastical: Creative, unreal objects that may blend features or stretch reality.

Multiple Object Generation:
Grouped: Multiple objects without interaction.
Action: Interactions involving actions, like movement or usage.
Spatial: Objects with spatial relations to each other.
Imaginative: Unreal interactions or fantastical scenes.

This structure ensures a diverse and comprehensive prompt set, with various levels of detail and creativity across single and multiple object descriptions. I’m 
ready for the next steps, such as requirements for the prompt creation. Please provide the additional information or tips you mentioned.

Figure S8. Examples of guiding GPT-4 for automatic prompt generation. (Part 1/2)



Please create 100 “Basic” prompts about “single object generation” within 10 words. Do not describe the environment. Please make sure that the prompt you 
provided has enough diversity and comprehensiveness, and that the format is similar to my example. 

Here are 100  “Basic”  prompts about a single object, each within 10 words, ensuring a wide range of categories and diversity:  

1. A striped zebra  
2. A green pepper  
3. A brown leather belt  
4. A glowing light bulb  
5. A blue vase  
6. A round stool  
7. A wooden boat  
8. A white wedding dress  
9. A round gold coin  
10. A silver spoon  
11. A wooden dining table  
12. A yellow pencil  
13. A purple notebook  
14. …
...  
100. A delicious hamburger  

These prompts span a variety of categories, including clothing, accessories, household items, vehicles, and natural elements, ensuring coverage of different 
forms, materials, and textures.

Please create 100 “Spatial” prompts about “multiple object generation” within 20 words. Do not describe the environment. Please make sure that the prompt 
you provided has enough diversity and comprehensiveness, and that the format is similar to my example. 

Please create 100 “Imaginative” prompts about “multiple object generation” within 20 words. Do not describe the environment. Please make sure that the 
prompt you provided has enough diversity and comprehensiveness, and that the format is similar to my example. 

Here are 100 “Spatial” prompts about multiple objects, each within 20 words, focusing on spatial relationships between objects with diversity and clarity:  

1. A red apple on a white ceramic plate  
2. A black hat hanging on a brass hook  
3. A glass teapot next to a porcelain cup  
4. A golden key inside a brown leather pouch  
5. A blue backpack under a wooden bench  
6. A silver spoon resting on a folded napkin  
7. A cat sitting next to a pair of shoes  
8. A guitar leaning against a wooden chair  
9. A clock above a wooden bookshelf  
10. A pair of sunglasses on top of a magazine  
11. A candle placed inside a glass jar  
12. A handwoven basket filled with a ripe peach  
13. A set of dice beside a deck of cards  
14. ... 
...
100. A small cactus inside a clay pot  

These prompts ensure spatial relationships between objects are clear, diverse, and easy to visualize while maintaining a compact, simple structure.

Here are 100 “Imaginative” prompts about multiple objects, each within 20 words, ensuring diversity, creativity, and intriguing interactions between objects:

1. A giraffe wearing sunglasses plays chess with a robot  
2. A dragon sipping tea from a porcelain cup  
3. A violin floating next to a glowing crystal ball  
4. A penguin in a tuxedo is conducting an orchestra with a baton  
5. A ghost riding a bicycle with a pumpkin helmet  
6. A knight polishing his sword while a cat reads a map  
7. A frog wearing boots and holding an umbrella  
8. A unicorn carrying a glowing lantern on its horn  
9. A lion rider is riding a motorcycle  
10. A shark with a crown is holding a golden trident  
11. A bear astronaut is planting a flag with a paw print  
12. A phoenix with flaming wings is carrying a silver lantern 
13. A raccoon detective is studying a map under a magnifying glass  
14. ...  
...
100. A dog wearing backpack is walking on a rainbow 

These imaginative prompts feature whimsical, surreal interactions between objects and creatures, maintaining variety and unexpected combinations for 
creativity in 3D generation.

Figure S9. Examples of guiding GPT-4 for automatic prompt generation. (Part 2/2)



A green pepper

A cactus with a blooming flower

A blue jacket with silver buttons, fur lining on the collar, and a tear on the right sleeve

A house shaped like a giant teapot, complete with handle and spout

A green cactus and a glass bottle

A duck is chasing a yellow ball with its wings flapping

A polished silver bell resting on a wooden stand

A mermaid is holding a white conch shell

8.74/8.39/7.39/8.00  8.89/8.73/7.67/8.43  5.00/3.28/2.80/3.71  9.53/8.95/8.44/8.90  6.41/5.42/5.81/5.74   5.74/5.00/4.72/4.90   3.56/2.10/2.82/2.58  8.85/8.76/7.88/8.47

6.58/5.45/5.57/5.76  7.58/5.63/5.72/6.10  6.82/4.89/4.44/5.32  6.17/5.10/5.12/5.53  6.41/5.42/5.81/5.74   3.16/2.67/2.50/2.62   7.00/6.41/5.53/6.11  6.89/4.94/4.75/5.33

4.89/4.17/4.28/4.29  7.00/6.89/6.75/7.05  1.06/1.19/1.29/1.11  7.26/6.75/6.78/7.00  6.11/6.00/5.55/5.76   5.56/4.90/4.94/4.95   2.63/2.06/2.05/1.95  6.79/7.33/7.00/7.10

4.89/5.06/4.70/4.38  4.42/4.50/3.44/3.76  4.89/3.28/3.39/3.48  4.89/5.47/3.94/4.29  6.33/6.06/5.10/5.68   5.11/5.47/4.61/4.57   3.76/2.58/2.94/2.58  6.35/6.42/6.38/6.00

5.12/6.00/6.13/5.47  5.90/7.88/7.59/6.95  5.89/5.63/4.85/5.20  5.42/7.00/6.80/5.90  4.24/4.19/4.45/4.21   4.90/4.41/4.29/4.16   3.53/2.68/3.06/2.84  4.32/5.32/5.76/4.86

5.94/5.47/5.50/5.11  6.05/4.06/3.89/4.33  5.16/3.73/3.24/3.86  4.21/3.50/3.78/3.52  1.58/1.58/1.78/1.38   3.89/3.58/3.67/3.48   6.86/4.75/4.90/5.53  7.61/6.47/6.25/6.55

7.47/6.05/5.33/6.10  7.11/5.89/5.90/6.48  5.79/3.55/2.95/3.67  5.53/4.17/3.95/4.52  2.79/2.89/3.05/2.60   2.47/1.91/2.43/1.76   6.95/5.83/4.74/6.05  7.63/6.22/5.39/6.29

6.68/6.50/5.61/6.24  7.00/6.78/6.39/6.48  4.41/2.84/2.81/3.16  7.11/7.21/6.89/7.00  4.38/4.95/5.50/4.50   5.81/5.44/4.65/5.26   5.06/3.47/3.56/3.79  7.63/8.00/8.00/7.86
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Figure S10. More results of eight generative methods for eight categories. The scores below each sample denote alignment, geometry,
texture, and overall quality, respectively.
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