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Appendix

In this Appendix, we provide the following:
¢ Details of Experimental Setup (Appendix A)
— Datasets
— Model architectures
* Detailed Analysis of Attention in VLMs (Appendix B)
— Attention distribution
— Attention intensity
* Additional Experiments (Appendix C)
— VisPruner with various visual encoders
— VisPruner on background information
— Additional ablation study
* Efficiency Analysis with FlashAttention (Appendix D)

A. Details of Experimental Setup
A.1. Datasets

We evaluate our method on a total of 13 widely used bench-
marks, including 10 image benchmarks and 3 video bench-
marks. Each task is described as follows.

A.1.1. Image benchmarks

We conduct experiments on 10 image benchmarks used in
LLaVA [17], including 5 visual question answering bench-
marks and 5 multi-modal reasoning benchmarks. All infer-
ence settings and evaluation metrics for these tasks follow
the original configurations in LLaVA-1.5 [17].

VQAV2 [5]. The VQAvV2 benchmark evaluates the model’s
visual recognition capabilities through open-ended ques-
tions. It consists of 265,016 images from MSCOCO
dataset [14], with each image containing at least 3 ques-
tions. The dataset incorporates adversarially balanced ques-
tion design, ensuring that each question corresponds to at
least two images with completely different answers, pre-
venting models from relying solely on statistical patterns to
derive answers. We utilize the test-dev set for evaluation,
which includes 107,394 image-question pairs. Each ques-
tion is associated with 10 ground truth answers, and auto-
matic evaluation metrics are used for scoring.

GQA [7]. The GQA benchmark focuses on evaluating
structured understanding and reasoning abilities for scenes
depicted in images. In addition to images and questions, it
provides scene graph annotations derived from the Visual
Genome dataset [10] for each image, which include struc-
tured descriptions of objects, attributes, and their relation-
ships within the scene. The questions are generated using
the scene graphs and a pre-designed engine, ensuring that

each question corresponds to a clear semantic path. We use
the accuracy on the test-dev set for evaluation, which con-
tains 12,578 image-question pairs.

VizWiz [6]. The VizWiz benchmark uses images captured
by blind users to evaluate the model’s visual understand-
ing capabilities in real-world scenarios. Each image is first
taken and uploaded by a blind user, accompanied by a ques-
tion. The question is then paired with 10 crowdsourced an-
swers for automated evaluation. Since the images are cap-
tured by blind users in real-life settings, some questions
may be difficult to answer due to issues like blur or poor
lighting. Additionally, since the images and questions orig-
inate from the same source, some questions may not be di-
rectly relevant to the image. We evaluate the model using
the test-dev set, which includes 8,000 image-question pairs.

ScienceQA [19]. The ScienceQA benchmark uses
multiple-choice questions to evaluate the model’s zero-shot
generalization on scientific topics. The dataset contains rich
domain diversity across three subjects: natural sciences,
language science, and social science. Questions within each
subject are hierarchically organized by topic, category, and
skill, encompassing a total of 26 topics, 127 categories,
and 379 skills. The images are illustrations related to the
questions, and some questions do not have corresponding
images. We evaluate the model using a subset of the test
set that includes both questions and images, referred to as
SQA-IMG, which contains 2,017 image-question pairs.

TextVQA [21]. The TextVQA benchmark is designed to
evaluate the model’s ability to recognize textual informa-
tion within images, emphasizing the integration of optical
character recognition (OCR) and natural language under-
standing. The images are primarily sourced from the Open
Images v3 dataset [9] and contain a variety of scenarios such
as signs, billboards, and product packaging that contain rich
text information. In addition to raw images, reference OCR
tokens are also provided. Answers to the questions may be
directly derived from the text in the images or require con-
textual reasoning. We evaluate the model’s performance on
a validation set containing 5,000 image-question pairs.

POPE [12]. The POPE benchmark evaluates the halluci-
nation in large vision-language models through questions
about object presence. The images are sourced from the
MSCOCO dataset [ 14], and the questions focus on whether
a specific object is present in the image, assessing the de-
gree of object hallucination. We use the average F1 score
across three different sampling strategies in the test set for
evaluation, including 8,910 image-question pairs.



MME [4]. The MME benchmark aims to comprehensively
evaluate the perceptual and cognitive capabilities of multi-
modal models, encompassing a total of 14 subtasks. The
perception tasks include OCR as well as coarse- and fine-
grained recognition. Coarse-grained recognition primar-
ily focuses on the presence, count, position, and color of
objects, while fine-grained recognition involves identify-
ing specific posters, celebrities, scenes, landmarks, and art-
works. All questions are binary judgment tasks. We use
the perception score for performance evaluation, with 2.374
image-question pairs in total.

MMBench [18]. The MMBench benchmark is designed
to comprehensively evaluate the capabilities of multi-modal
models. It defines three levels of competence from the top
down, with the first level containing two basic abilities, per-
ception and reasoning, the second level containing 6 more
specific capabilities, and the third level containing 20 con-
crete tasks. Each task contains multiple choice questions
to assess model performance on the task. The benchmark
is available in both English and Chinese. The English ver-
sion includes 4,377 image-question pairs, while the Chinese
version, also referred to as MMBench-CN, contains 4,329
pairs. Both versions are used for evaluation.

MM-Vet [24]. The MM-Vet benchmark focuses on the
integration of different core vision-language capabilities.
It defines 6 core capabilities, including recognition, OCR,
knowledge, language generation, spatial awareness, and
mathematics, which are combined into 16 specific tasks.
The benchmark utilizes ChatGPT assistant for evaluation,
providing unified metrics for assessing answers of varying
styles. It includes a total of 218 image-question pairs.

A.1.2. Video benchmarks

To evaluate the performance of different methods in scenar-
ios with higher visual redundancy, we also conduct exper-
iments on 4 video benchmarks used in Video-LLaVA [13].
The evaluation follows Video-ChatGPT [20], using gpt-3.5-
turbo assistant for scoring. Due to the commercial API us-
age limits, we follow [3] to use the first 1K samples of each
benchmark in the experiments.

TGIF-QA [8]. The TGIF-QA benchmark extends image-
based VQA tasks to videos, requiring models to focus on
both spatial and temporal attentions. It includes 72K an-
imated GIFs from the Tumblr GIF dataset [11] and 165K
crowdsourced question-answer pairs. We evaluate model
performance using the Frame QA task in this benchmark.
MSVD-QA [22]. The MSVD-QA benchmark is based
on the Microsoft Research Video Description Corpus [2],
which is commonly used for video captioning tasks. The
question-answer pairs in the benchmark are derived from
the descriptions in the corpus. The benchmark consists of
1,970 video clips and 50.5K question-answer pairs in total.
MSRVTT-QA [22]. The MSRVTT-QA benchmark is
based on the Microsoft Research Video to Text dataset [23],

which is larger and has more complex scenes than the
MSVD dataset. The benchmark consists of 10K video clips
and 243K question-answer pairs in total.

A.2. Model architectures

LLaVA-1.5 [15]. LLaVA is one of the most widely used
open-source vision-language models, and its simple design,
low tuning cost, and outstanding performance make it a cor-
nerstone in the field of multi-modal models. Specifically,
LLaVA employs a pre-trained CLIP as the visual encoder
and Vicuna as the text decoder. A simple linear projector
connects the two modules, enabling the LLM to accept vi-
sual tokens of CLIP as input. Meanwhile, visual instruction
tuning allows the model to handle vision-language tasks.
Compared to the original LLaVA, LLaVA-1.5 increases the
input image resolution from 224 to 336 and incorporates
more instruction tuning data, resulting in a significant per-
formance improvement.

LLaVA-NeXT [16]. Also known as LLaVA-1.6, LLaVA-
NeXT builds upon LLaVA-1.5 by further increasing the in-
put image resolution, achieving improvements in reasoning,
OCR, and world knowledge. Unlike the fixed resolution
increase in LLaVA-1.5, LLaVA-NeXT employs a dynamic
high-resolution design. Specifically, the model can select
the best aspect ratio based on the resolution of the input
image, increasing the resolution by up to 4x. Without al-
tering the visual encoder, high-resolution images are split
into several sub-images of the same size as the original im-
age. These sub-images are individually encoded and con-
catenated before being fed into the LLM.

Video-LLaVA [13]. On the basis of image understanding,
Video-LLaVA extends this capability to video comprehen-
sion. It unifies representations of images and videos through
alignment before projection. The overall architecture re-
mains consistent with LLaVA: the visual encoder encodes
continuous video frames individually, and the representa-
tions are concatenated as inputs to the LLM. After joint
training, Video-LLaVA is capable of understanding both
image and video data.

Qwen-VL [1]. Qwen-VL is another widely used open-
source vision-language model. Similar to LLaVA, it in-
cludes a visual encoder (OpenCLIP) and a text decoder
(Qwen LLM). For the vision-text connector, Qwen-VL em-
ploys a vision-language adapter, which transforms image
inputs into fixed-length token sequences via cross-attention.
After three stages of training, Qwen-VL achieves strong
vision-language understanding capabilities. And Qwen-
VL-Chat is further fine-tuned based on Qwen-VL to en-
hance its performance in conversational tasks.
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Figure A.1. Distribution of visual attention over token positions in CLIP. From left to right: attention distribution of the [CLS] token in the
penultimate layer, average attention distribution across all visual tokens in the penultimate layer, attention distribution of the [CLS] token
in the final layer, and average attention distribution across all visual tokens in the final layer. The red vertical dashed lines indicate the
length of each row in the input image (24 for CLIP-ViT-L-14-336px used in LLaVA-1.5).

B. Detailed Analysis of Attention in VLMs

B.1. Attention distribution

We first present the distribution of visual attention in CLIP.
As shown in Fig. A.1, the left two subplots show the visual
attention in the penultimate layer of CLIP. The visual to-
kens used in LLaVA-1.5 also come from this layer, which
retains more local features and image details. The right two
subplots show the visual attention in the final layer of CLIP,
which serves as the output layer. In the penultimate layer,
attention from the [CLS] token is more concentrated com-
pared to attention from other visual tokens, primarily fo-
cusing on regions closer to the image center. The [CLS]
attention in the final layer is similar to that in the penulti-
mate layer, but attention from other visual tokens becomes
uniformly distributed due to the lack of supervision signals.
Based on these observations, we adpot the [CLS] attention
from the penultimate layer for visual token pruning.

Fig. B.1 and Fig. B.2 show the distribution of visual-text
attention in the 32 layers of the 7B LLaMA language model,
focusing on attention from all tokens, other visual tokens,
language instruction tokens, and the last token. Unlike the
attention distributions in the visual encoder, these visual-
text attention distributions exhibit a clear trend of increas-
ing intensity with larger token indices, which termed atten-
tion shift in the main text. Pruning visual tokens based on
such attention leads to significant performance degradation,
especially at high reduction ratios. This shift phenomenon
is consistently observed across all types of visual-text at-
tention. Notably, attention from the text tokens is signif-
icantly weaker than from the visual part, especially after
the second layer, corroborating the inefficient visual atten-
tion phenomenon identified in FastV [3] and providing suf-
ficient motivation for visual token pruning. Additionally,
we observe that the attention distribution in the first 2 lay-
ers differs noticeably from the subsequent 30 layers. Deeper
analysis of this distinction and how to leverage it to improve
VLM performance is left as future work.

Method | # Token | AI2D ChartQA MME MMStar | Average
LLaVA-OV-7B | 729 | 807 60.5 1966 589 74.6
FastV 128 | 698 174 1397 439 50.2
SparseVLM 128 | 703 19.6 1665  47.0 55.0
VisPruner 128 | 74.6 42.8 1910 526 66.4

Table C.1. Performance on LLaVA-OV-7B with SigLIP encoder.

Method | #Token | A2D ChartQA MME MMStar | Average
Qwen2.5-VL-7B | 1296 | 84.4 85.9 2315 638 | 875
FastV 256 | 777 52.0 2109 535 722
SparseVLM 256 | 784 547 2092 545 73.1
VisPruner 256 79.2 59.1 2174 56.8 76.0

Table C.2. Performance on Qwen2.5-VL-7B with Qwen2.5-ViT.

B.2. Attention intensity

We visualize the attention maps from the [CLS] token in the
visual encoder and the last token in the language model for
the same input images in Fig. B.3. The attention from the
[CLS] token is more concentrated, focusing on key fore-
ground objects like Big Ben, train carriages, paragliders,
sticky notes, the bird, giraffes, and the titles on book covers,
as well as certain artifacts that encode global information.
In contrast, the attention from the last token in the language
model is more dispersed, spread across the entire input im-
age. This indicates that it includes more noise, making it
less effective for accurately evaluating the importance of
visual tokens. This discrepancy highlights a degree of mis-
alignment between the visual and language modalities in
existing vision-language models. Addressing this misalign-
ment to improve VLM performance on multi-modal under-
standing tasks remains a direction for future work.

C. Additional Experiments

C.1. VisPruner with various visual encoders

We apply VisPruner to LLaVA-OneVision and Qwen2.5-
VL in Tabs. C.1 and C.2. The former uses SigLIP en-
coder, while the latter adopts a redesigned Qwen2.5-ViT en-
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Figure B.1. Distribution of visual-text attention over visual token positions in LLaMA. The top rows display the average attention distri-
bution across all tokens, while the bottom rows display the attention distribution from other visual tokens. Each type of attentions include
results from all 32 layers of the 7B language model. The red vertical dashed lines indicate the length of each row in the input image (24
for CLIP-ViT-L-14-336px used in LLaVA-1.5).

coder. We select important tokens based on the average at- C.2. VisPruner on background information
tention scores from all visual tokens without a [CL S] token.
VisPruner achieves the best performance on both VLMs, We use GQA for this evaluation since among the five se-

demonstrating its effectiveness across different encoders. mantic types, global pertains to overall properties of the
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Figure B.2. Distribution of visual-text attention over visual token positions in LLaMA. The top rows display the attention distribution from
language instruction tokens, while the bottom rows display the attention distribution of the last token, which is also used to predict the next
token. Each type of attentions include results from all 32 layers of the 7B language model. The red vertical dashed lines indicate the length
of each row in the input image (24 for CLIP-ViT-L-14-336px used in LLaVA-1.5).

scene like weather or place, requiring the model to attend C.3. Additional ablation study

to the background. As shown in Tab. C.3, incorporating

diverse tokens leads to significant improvements in global, Here we conduct an additional ablation study on the hy-
demonstrating its ability to retain background information. perparameter r of important ratio in Tabs. C.4 and C.5
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Figure B.3. Visualizations of attention maps from the [CLS] token in the visual encoder and the last token in the language model.

Method # Token . Fl.v € GQA Semantic Typ'es

object attribute category relation global
LLaVA-1.5-7B | 576 | 877 683 53.2 538 637
VisPruner (r = 0.5) 64 81.9 60.3 45.4 48.7 61.2
VisPruner (r = 1.0) 64 82.3 59.9 44.7 48.4 59.2

Table C.3. Background information evaluation on GQA (global).

r | #Token | VQAV2 GQA TextVQA MME | Average

0.00 64 72.0 56.5 53.5 1324.2 62.1
0.25 64 725 55.8 55.2 1364.2 62.9
0.50 64 72.7 55.4 55.8 1369.9 63.1
0.75 64 72.6 55.2 55.6 1363.3 62.9
1.00 64 72.6 55.0 55.3 1355.8 62.7

Table C.4. Hyperparameter sensitivity on LLaVA-1.5-7B.

for LLaVA-1.5 and Qwen2.5-VL, respectively. The perfor-
mance differences of various r remain minimal. In our main
experiments, we set r to 0.5 to balance importance and di-
versity, yielding the best results on all models.

r | #Token | AI2D ChartQA MME MMStar | Average

0.00 256 715 58.8 2112 559 74.5
0.25 256 78.7 59.0 2127 56.7 75.2
0.50 256 79.2 59.1 2174 56.8 76.0
0.75 256 79.4 56.7 2178 56.8 75.5
1.00 256 79.6 54.7 2181 57.2 75.1

Table C.5. Hyperparameter sensitivity on Qwen2.5-VL-7B.

D. Efficiency Analysis with FlashA ttention

In Tabs. D.1 to D.3, we compare the computational effi-
ciency between FastV and our VisPruner under LLaVA-
1.5-7B, LLaVA-1.5-13B, and LLaVA-NeXT-7B. Unlike
FastV, which prune visual token within the LLM, Vis-
Pruner prunes tokens before the LLM, enabling compatibil-
ity with FlashAttention. This design results in significantly
higher efficiency. Note that the original implementation of
SDPA also includes FlashAttention, so its computational ef-
ficiency is comparable to that of FlashAttention2, with only
slight differences. All analyses are performed on a single
NVIDIA A100-80GB GPU, evaluated on POPE.



Method Reduction | # Token | FLOPs (T) | Storage (MB) | GPU Memory (GB) | CUDA Time (ms) | Accuracy (%)
LLaVA-1.5-7B 0% 576 8.02 288.00 14.68 107.26 85.88
FastV 6.20 220.50 14.58 107.09 85.29
VisPruner (sdpa) 25% 432 101.95 85.92
VisPruner (flash attention) 6.08 216.00 14.51 101.35 85.87
FastV 4.40 153.00 14.52 99.72 82.45
VisPruner (sdpa) 50% 288 93.57 86.20
VisPruner (flash attention) 4.16 144.00 14.46 92.26 86.16
FastV 2.62 85.50 14.52 94.67 73.74
VisPruner (sdpa) 75% 144 85.06 83.46
VisPruner (flash attention) 2.26 7200 14.44 84.03 83.42
FastV 1.57 45.31 14.64 90.48 57.30
VisPruner (sdpa) 90% 58 79.11 75.85
VisPruner (flash attention) L13 2900 14.54 77.44 75.82
FastV 1.22 31.72 14.63 89.31 35.47
VisPruner (sdpa) 95% 29 78.09 67.24
VisPruner (flash attention) 0.76 14.50 14.54 77.15 67.22

Table D.1. Efficiency comparison between FastV and VisPruner under LLaVA-1.5-7B.

Method | Reduction | # Token | FLOPs (T) | Storage (MB) | GPU Memory (GB) | CUDA Time (ms) | Accuracy (%)
LLaVA-1.5-13B | 1528 | 45000 | 2698 | 15664 | 85.99 \ 10726 | 8588
FastV 11.69 343.13 26.61 151.66 85.86
VisPruner (sdpa) 25% 432 138.36 86.73
VisPruner (flash attention) 11.50 337.50 26.58 137.95 86.72
FastV 8.14 236.25 26.40 137.83 85.15
VisPruner (sdpa) 50% 288 124.13 86.05
VisPruner (flash attention) 7.76 225.00 2631 123.33 86.04
FastV 4.62 129.38 26.40 123.69 79.43
VisPruner (sdpa) 75% 144 104.81 83.10
VisPruner (flash attention) 4.05 112.50 26.29 103.57 83.09
FastV 2.53 65.70 26.40 114.98 67.26
VisPruner (sdpa) 90% 58 94.80 74.71
VisPruner (flash attention) 1.86 4531 2627 94.04 74.66
FastV 1.83 44.19 26.55 114.25 49.83
VisPruner (sdpa) 95% 29 94.48 65.90
VisPruner (flash attention) L12 22.66 2643 93.73 65.79

Table D.2. Efficiency comparison between FastV and VisPruner under LLaVA-1.5-13B.
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