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1. More Quantitative Results

Discussion about the DepthNet. We note that the depth
quality has a significant impact on the detection perfor-
mance, and our current DepthNet represents a trade-off be-
tween accuracy and efficiency. The generalization ability
can be enhanced by incorporating advanced depth estima-
tion methods. We use the relative depth from Depth Any-
thing v2 [6] as an additional input to the monocular branch
of DepthNet, with results reported in Table 1. Stronger
depth networks can further improve detection performance,
and our framework is flexible to support such upgrades.

Performance under novel light conditions. To explore
the applicability of SGCDet under more challenging con-
ditions, we conduct experiments under novel lighting vari-
ations. We simulate such conditions by applying random
brightness and contrast adjustments, and random Gaussian
light spot overlays, as illustrated in Fig. 1. As shown in
Table 2, SGCDet remains robust under these conditions.

Per-category performance. We report the per-category
AP@0.25 and AP@0.50 scores on the ScanNet [2] and
ARKitScenes [1] datasets in Tables 3, 4, 5, and 6. These
results demonstrate that SGCDet consistently outperforms
existing methods across most categories.

2. More Qualitative Results

We provide additional qualitative results on the ScanNet
and ARKitScenes datasets in Fig. 2 and Fig. 3, respectively.
Compared to ImGeoNet [3], which relies on ground-truth
scene geometry for supervision, our SGCDet detects more
target objects and achieves more accurate object classifica-
tion results.

*Corresponding authors.

Table 1. Comparison of DepthNet on the ScanNet dataset.

Performance SGCDet + Depth Any. v2-Small + Depth Any. v2-Base
mAP@0.25 61.2 62.3 (↑ +1.1) 62.6 (↑ +1.4)
mAP@0.50 35.2 37.1 (↑ +1.9) 37.4 (↑ +2.2)

Figure 1. Visualization of the synthetic novel light condition.

Table 2. Comparison of light conditions on the ScanNet dataset.

Light condition
Normal light condition Synthetic novel light condition

mAP@0.25 mAP@0.50 mAP@0.25 mAP@0.50
SGCDet 61.2 35.2 61.0 34.9

3. Visualization of the Sparse Volume Con-
struction

We present the visualization of two refinement stages of
our sparse volume construction in Fig. 4. The voxel res-
olutions at the two stages are 20× 20× 8 and 40× 40× 16,
respectively. As observed, the pseudo labels roughly in-
dicate the occupancy of 3D scenes, providing flexible su-
pervision for the occupancy estimation module. Benefiting
from this design, our network effectively identifies and se-
lects regions likely to contain objects for volume feature re-
finement, thereby avoiding redundant computations in free
space.

4. Limitations
While SGCDet achieves superior performance compared
to previous approaches, its accuracy on certain categories
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(e.g., TV monitor, picture) remains sub-optimal. Addition-
ally, the perception range of 3D volumes is constrained by
the predefined voxel size and resolution, which may not be
suitable for all 3D scenes. As illustrated in Fig. 4 (Scene 3),
the fixed 3D volume fails to cover objects located at both
sides. Future work could explore methods to dynamically
adjust the perception range of 3D volumes based on the in-
put images. Despite these limitations, we believe SGCDet
contributes to advancing indoor 3D perception.
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Table 3. Per-category AP@0.25 scores on the ScanNet dataset. The best results are in bold.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
NeRF-Det [4] 42.3 84.6 75.9 78.5 56.3 33.4 21.4 49.9 2.4 50.6 73.9 21.3 64.3 62.5 90.9 57.7 75.5 32.3
MVSDet [5] 40.5 82.4 79.2 80.2 55.6 40.3 25.4 60.9 3.5 47.3 73.4 28.9 64.6 64.1 94.8 52.1 76.7 41.8

SGCDet (Ours) 43.6 83.1 82.3 84.7 61.7 42.1 33.6 70.4 4.0 57.3 75.4 47.1 61.1 69.8 95.6 59.9 83.8 46.2

Table 4. Per-category AP@0.50 scores on the ScanNet dataset. The best results are in bold.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
NeRF-Det [4] 15.8 73.1 45.3 40.6 39.5 8.1 2.0 20.3 0.2 13.8 42.5 5.3 25.3 10.0 63.9 26.0 49.1 12.7
MVSDet [5] 14.9 71.4 48.9 54.4 38.8 9.5 3.1 29.6 0.8 9.8 48.5 5.6 40.2 10.2 77.3 29.0 52.9 17.7

SGCDet (Ours) 18.0 72.5 57.3 61.8 45.6 12.1 3.6 44.1 1.1 8.5 52.1 14.1 39.1 11.8 83.0 28.0 58.7 21.7

Table 5. Per-category AP@0.25 scores on the ARKitScenes dataset. The best results are in bold.

Method cab fridg shlf stove bed sink wshr tolt bthtb oven dshwshr frplce stool chr tble TV sofa
NeRF-Det [4] 57.1 81.8 43.0 20.1 89.0 38.0 81.2 92.2 94.9 65.5 52.7 59.2 29.8 74.6 67.9 1.3 78.6
MVSDet [5] 58.9 84.1 50.9 15.7 86.1 46.4 78.3 93.1 94.9 67.6 39.1 51.6 35.2 77.2 70.1 3.5 80.4

SGCDet (Ours) 61.6 84.1 53.5 16.2 92.7 48.6 79.8 92.8 95.0 70.0 46.1 48.2 34.5 79.3 73.4 0.4 79.4

Table 6. Per-category AP@0.50 scores on the ARKitScenes dataset. The best results are in bold.

Method cab fridg shlf stove bed sink wshr tolt bthtb oven dshwshr frplce stool chr tble TV sofa
NeRF-Det [4] 25.5 70.8 15.3 4.2 69.4 8.5 67.6 74.2 81.7 37.7 43.0 12.6 10.4 44.8 34.6 0.0 51.2
MVSDet [5] 30.2 76.9 10.8 3.1 72.8 16.2 61.7 81.9 85.9 39.5 21.4 15.5 13.5 51.3 40.5 0.5 60.6

SGCDet (Ours) 38.0 68.1 19.0 4.3 87.8 13.9 71.6 87.5 93.9 48.5 35.2 7.7 17.6 55.5 49.8 0.0 62.0

ImGeoNet
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Figure 2. Qualitative results on the ScanNet dataset.
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Figure 3. Qualitative results on the ARKitScenes dataset.
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Figure 4. Visualization of sparse volume construction. The voxel resolutions of the two refinement stages are 20×20×8 and 40×40×16,
respectively. Our sparse volume construction adaptively identifies and selects regions likely to contain objects. This supports efficient
feature refinement while avoiding redundancy.
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