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Overview

In this supplementary material, we provide the following
items for a better understanding of our main paper.

1. CVOGL-Seg dataset. § |

2. Theoretical upper bounds. § 2

3. Qualitative analysis. § 3

4. Computational costs. § 4

5. Implementation details. § 5

1. CVOGL-Seg Dataset

CVOGL-Seg, introduced in this paper, represents the first
dataset specifically developed for cross-view object seg-
mentation. While the main paper provides a general
overview, this section offers a more detailed introduction.

Figure 1. Examples of object mask annotations in the CVOGL-
Seg dataset (white pixels represent the objects/foregrounds, and
black pixels represent the backgrounds).

Mask Annotation. The CVOGL-Seg dataset creates seg-
mentation mask annotations for objects using bounding box
(bbox) annotations from the CVOGL dataset [8]. The
pipeline involves converting the bbox coordinates to GPS

formats, linking them to OpenStreetMap [1] to find relevant
elements in the specified region, and then creating masks
for the corresponding elements. These masks are saved as
binary images (1024 x1024), where white pixels represent
the foreground and black pixels represent the background.
Figure | illustrates examples of object mask annotations,
highlighting the diversity of object shapes.

Figure 2. Comparison of simultaneously visualizing the bounding
boxes and mask annotations onto satellite images.

Annotation Quality. To ensure the high quality of the
annotations, we manually review all masks by comparing
them against their corresponding bounding boxes. Any
masks with noticeable errors are re-annotated using the
SAM annotation tool [5]. Figure 2 shows the comparison
of simultaneously visualizing the bounding boxes and mask
annotations onto satellite images. From these comparisons,
we can observe that the object mask annotations generated
by our pipeline closely correspond to the existing bounding
box (bbox) annotations. Additionally, the mask annotations
can perfectly cover the object without considering other re-
gions (non-masked regions within the bboxes) as objects as
well, leading to imprecise semantic annotations.

Dataset Statistics. Figures 3a and 3b illustrate the distri-
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bution of the number of annotated pixels and the area oc-
cupied by different categories in the CVOGL-Seg dataset.
These results reflect the compositional characteristics of the

dataset and provide an important reference for future expan-
sion of the dataset and model training. The CVOGL-Seg

dataset is partitioned in the same way as the CVOGL [8]
dataset, which also supports the Drone — Satellite task and

the Ground — Satellite task. Both tasks aim to locate ob-
jects based on cross-view images. The primary distinction

lies in the view of the query images: in the Drone — Satel-

lite task, they are captured from drone view, whereas in the

Ground — Satellite task, they are taken from ground view.
Table 1 shows the statistics of the CVOGL-Seg dataset.

2. Theoretical Upper Bounds

In the main paper, we directly present the theoretical upper
bounds for different schemes in achieving pixel-level pre-
cise object localization. In this section, we will provide a

detailed explanation of how these upper bounds are derived.
In cross-view image geo-

Retrieval-based scheme.
localization [2, 3, 7, 10], the reference images (satellite im-
ages) in the reference database are always square-shaped,
representing special rectangles with equal width and height.
Thus, when employing a retrieval-based method to frame

cross-view object geo-localization, we use squares to parti-

tion the satellite images. Specifically, for a given satellite
image, sliding windows with varying sizes (w) and strides
(s) are used for sampling. A common configuration in-

volves setting w
provides examples of different sampling parameters used to

construct the reference image database.

s, as illustrated in Figure 4, which
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Table 1. Statistics of the CVOGL-Seg dataset.

sponding results in the main paper.



It is important to emphasize that while more sophisti-
cated sampling strategies may further enhance the perfor-
mance of the retrieval-based scheme, the rectangular shack-
les remain inherent limitations of this scheme.

Detection-based scheme. The bounding boxes provided
by the CVOGL [8] dataset are the best results that can be
obtained by the detection-based scheme, as this is the opti-
mization objective of the detection scheme. We convert the
bounding box annotations in the CVOGL dataset to detec-
tion masks and then compute the theoretical upper bound
with the mask annotations in the CVOGL-Seg dataset, as
shown in Table 1 in the main paper.

Since the detection-based scheme can theoretically iden-
tify arbitrary rectangles, the theoretical upper bound of the
retrieval-based scheme (retrieving only from pre-sampled
rectangles) cannot surpass that of the detection-based
scheme. However, the detection-based scheme is still lim-
ited to rectangular shackles.

Segmentation-based scheme. In the segmentation set-
ting, pixel-wise mask outputs can represent any irregularly
shaped objects. Therefore, the segmentation-based scheme
can theoretically achieve perfect pixel-level localization of
any object, leading to optimal performance as shown in Ta-
ble 1 of the main paper.

Figure 5 illustrates the optimal masks that can theoreti-
cally be obtained for different schemes. We treat the irreg-
ular object segmentation mask as homogeneous and use its
centroid as the object’s position coordinates (the mean of
the horizontal and vertical coordinates). Rectangular masks
are a special case of irregular masks.
Detection Mask

Retrieval Mask Segmentation Mask

Figure 5. Comparison of the optimal masks that can be theoret-
ically obtained in different schemes. Retrieval masks are trans-
formed from patches (uniformly sized squares). Detection masks
are transformed from bounding boxes (flexibly sized rectangles).
Segmentation masks can take arbitrary, irregular shapes.

3. Qualitative Analysis

In the main paper, we show some localization visualization
results on the CVOGL-Seg (Drone — Satellite) test set. In
Figures 7 and 8, we provide more localization visualiza-
tion results on the CVOGL-Seg test set for the Ground —
Satellite and Drone — Satellite tasks. These visualizations
highlight the necessity of employing cross-view object seg-
mentation to frame the cross-view object geo-localization
task, facilitating pixel-level, fine-grained object localization
and demonstrating the effectiveness of each component of
Transformer Object Geo-localization (TROGeo).

Failure Cases and Challenging Task. Figure 6 illustrates
several failure cases. TROGeo incorrectly identifies objects
with appearances highly similar to the query object and lo-
cated nearby, resulting in localization failures. These out-
comes are understandable, as even remote sensing experts
may struggle to accurately distinguish these objects. More-
over, it highlights that cross-view object geo-localization
(cross-view object segmentation) is an exceptionally chal-
lenging task, warranting further exploration by researchers.

Figure 6. Localization failure cases. Red and

regions repre-
sent ground truth and regions, respectively. Best viewed

on screen with zoom-in.

4. Computational Costs

In this section, we discuss the computational costs of repre-
sentative methods for different schemes. The experimen-
tal results are shown in Table 3, and the metrics com-
putations are calculated by processing one drone image
(256x256) and one satellite image (1024 x1024) from the
Drone — Satellite task on a single NVIDIA V100 GPU.
Sample4Geo [2] is the best retrieval-based method (w =
128, s = 64), but there is a significant gap between its
Frames Per Second (FPS) at training and testing. This is be-
cause the method selects only the best patch (128 x 128) for
training, while all 225 patches (225 = ((1024 — 64)/64)?)
need to be computed to retrieve the best patch during test-
ing. DetGeo [8] is the best detection-based method and
outputs bounding boxes in both the training and testing so
that the relevant metrics remain consistent. TROGeo is the
segmentation-based method with the least trainable param-
eters in the training stage. In the testing stage, the introduc-
tion of SAM [5] (freezing all parameters) to obtain highly
accurate object masks increases the parameters and reduces
the FPS. Nevertheless, TROGeo performs much better than



the other methods in both detection and segmentation set-
tings and is able to provide pixel-level object localization
information, which is difficult to achieve by the other meth-
ods. TROGeo completes a single instance of pixel-level
cross-view object geo-localization in approximately 0.6 s.

Parameters Acc@50% | mloU

Method ™) | FPS 1 | Output %)+ (%) +
Sample4Geo @ [2] 31.05

SampledGeo 3 7] 87.57 030 | pah 18.40 16.62

DetGeo @ [8]

DetGeo % [£] 73.80 26.86 | bbox 57.66 30.50

TROGeo @) 71.28 14.80 | bbox 70.09 40.83

TROGeo ¥ 707.66 1.59 | mask ) 56.59

Table 3. Comparison of computational costs of different methods.
All methods are tested on a single NVIDIA V100 GPU. One drone
image and one satellite image are processed at a time. @ denotes
the training and 3¢ denotes the testing.

5. Implementation Details

Our method is implemented based on PyTorch [6]. The
drone images, ground images, and satellite images are input
into our model with resolutions of 256 x256, 256 x512, and
1024 x 1024, respectively, following [8]. We use Adam [4]
optimizer to train our model with a learning rate of 1074,
51 = 0.9, and B3 = 0.999. Our model is trained for 25
epochs on two NVIDIA V100 GPUs with a batch size of
8. During training, we apply random flipping and rotation
to satellite images, while horizontal flipping is applied to
query images (data augmentation).
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Query Image Reference Image  TROGeo (Ours) w/o CVOPM w/o Shared W.

Figure 7. Visual comparison on the CVOGL-Seg (Ground — Satellite) test set. Click points are indicated by red dots in the query images.
Red, green and blue regions represent ground truth, prediction and overlapping regions, respectively. Best viewed on screen with zoom-in.

Query Image Reference Image  TROGeo (Ours) w/o Shared W.

Figure 8. Visual comparison on the CVOGL-Seg (Drone — Satellite) test set. Click points are indicated by red dots in the query images.
Red, green and blue regions represent ground truth, prediction and overlapping regions, respectively. Best viewed on screen with zoom-in.
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