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8. Experimental Setups

8.1. Datasets

All the datasets are built upon the Matterport3D [5] environ-
ment which contains 90 photo-realistic houses. Each house
is annotated with a navigation graph, wherein the agent’s
movement is exclusively confined to traversing along the
interconnected edges of nodes.

R2R [2] provides step-by-step instructions. The houses are
divided into 4 sets: 61 houses for training, which are anno-
tated with 14039 instructions; 11 and 18 houses for valida-
tion and testing in unseen environments, respectively, which
are annotated with 2,349 and 41,73 instructions. Among
the 61 houses for training, 56 houses are also utilized for
validation in seen environments. The instructions provided
in the R2R dataset describe each action the agent should
take during navigation, such as “Walk straight toward the
bar with the chairs. Turn left and go straight until you
get to three tables with chairs. Turn left and wait near the
couch”. The R2R dataset consists of 21,567 navigation in-
structions across 7,189 paths and 10,800 panoramic views
within 90 sizable real-world indoor settings. Instructions in
this dataset average 29 words in length.

R2R-CE [36] transfers 77% of R2R paths into continuous
environments, resulting a total of 5,611 paths and an av-
erage path length of 9.89m. Each instruction contains an
average of 32 words. Agents have a chassis radius of 0.1m
and are allowed to slide along obstacles.

REVERIE (Remote Embodied Referring Expression) [56]
provides coarse-grained instructions. The instructions are
usually concise and mainly describe the destinations and
target objects, such as “Go to the bathroom with a bronze
bathtub and bring me the towel above the bathtub”. The
training set contains 60 houses and 10,466 instructions,
the validation seen set contains 46 houses and 1,423 in-
structions, the validation unseen set contains 10 houses and
3,521 instructions, the test unseen set contains 16 houses
and 6,292 instructions. It comprises 21,702 instructions,
with each instruction averaging 18 words in length. Al-
though the trajectories in REVERIE align with that in R2R,
the task presents a significantly higher level of difficulty due
to the absence of explicit action guidance in the instruc-
tions, necessitating active exploration but the agent to locate
the destination. Given that coarse-grained instructions bear
closer resemblance to real-world scenarios, recent research
has predominantly focused on the dataset.

\ DUET KERM COSMO

OSR? 51.07 55.21 56.09
SRt 46.98 50.44 50.81
SPL1 33.73  35.38 35.93
Params(M)J 181 222 28
FLOPs(G)J 4.95 15.24 0.46
MACs(G)J 4.74 15.04 0.34

Inf. Time(s)] 13.20 52633 10.64
Train Speed (sample/s)T | 29 2 36

Table 6. Comparison of navigation performance and computa-
tional costs between DUET, KERM, and COSMO on the valida-
tion unseen set of the REVERIE dataset.

‘Total Text Others

DUET 180.5 87.6 929
COSMO | 27.6 145 133

Table 7. Detailed parameter comparison.
8.2. Training Details

R2R. Following previous works [8, 9, 29], we employ aug-
mented data [27] for pre-training. The model undergoes
100k steps of pre-training with a batch size of 64, followed
by fine-tuning for 20k steps with a batch size of 8.
R2R-CE. We transfer the model pretrained on the R2R
dataset to continuous environments through the Habitat
Simulator [63]. The model is finetuned with a batch size
of 16 and a learning rate of 1e-5 for 30 epochs.
REVERIE. Following DUET [9], we incorporate aug-
mented data generated by the speaker model during the pre-
training phase. The model is pre-trained for 100k steps with
a batch size of 32, then finetuned for 20k steps with a batch
size of 8.

9. More Comparisons

Tab. 6 presents the values in the radar chart on the left
side of Fig. 1 in the paper, along with the comparison with
KERM. Considering that all the metrics pertaining to com-
putational cost aim for lower values indicating better per-
formance, reciprocal transformations of these metrics are
taken in Fig. 1 in the paper. FLOPs is calculated by the fv-
core' library. MACs is calculated by the thop” library. As

Uhttps://github.com/facebookresearch/fvcore. git
Zhttps://github.com/Lyken17/pytorch-OpCounter.git



RSS | NE| SRt SPL?t

Mamba | 334 6939 57.18
Bi-Mamba | 3.20 70.80 58.13
V| 315 7258 60.68

Table 8. Ablation results of the RSS module on R2R validation
unseen split.

Components | REVERIE Val Unseen
# RSS CS3 |OSRT SRT SPLf
1 Self-Attn v 53.71 48.82 32.38
2 v Cross-Attn | 50.21 44.42 30.96

3 v v ‘ 56.09 50.81 35.93
Table 9. Ablation results of the RSS and CS3 module.

Size | OSRt SRt  SPLt

8 56.01 50.24 34.36
16 | 56.09 50.81 35.83
32 | 5427 48.54 33.57

Table 10. Ablation on the state space size of RSS and CS3.

illustrated in Section 5.3, inference time denotes the time
required for one-step navigation on the REVERIE valida-
tion unseen split. We also report training speed (referred
to as Train Speed in the table). It denotes the number of
samples trained per second by the model with a batch size
of 32 on a single A6000 GPU. It prefers higher value. In
Tab. 7, we present a detailed comparison of the parameters
between DUET and COSMO. After excluding the embed-
ding layer and the text encoder, COSMO contains 13.3M
parameters, amounting to merely 14.3% of DUET’s param-
eters (92.9M).

10. More Ablations

Effectiveness of RSS. To further validate the effectiveness
of the RSS module, we conduct ablation studies on the R2R
validation unseen split, as shown in Tab. 8. RSS is replaced
with vanilla Mamba and Bi-Mamba layers. Results show
that RSS yields about 2% increase in both SR and SPL over
Bi-Mamba.

Superiority of RSS and CS3. Tab. 4 presents the abla-
tion results of the RSS and CS3 modules without altering
the hybrid architecture. To further demonstrate the effi-
cacy of these two modules, additional ablation results are
provided in Tab. 9. RSS is replaced with self-attention in
row #1, resulting in a decrease of 2.0% in SR and 3.6% in
SPL. This indicates that RSS effectively captures contex-
tual relationships among tokens while efficiently compress-
ing information into the class token. CS3 is replaced with
cross-attention in row #2, leading to a significant decrease

| R2R Val Unseen ‘ RVR Val Unseen
‘<20 20 — 40 >40‘<15 15—-30 > 30
GT path len ‘ 5.73 6.03 6.24 ‘ 5.85 5.99 6.12

Instr len

Table 11. Average ground-truth path length associated with in-
structions across different length intervals.

‘ R2R Val Unseen ‘ RVR Val Unseen
GTpathlen | 4 5 6 7] 4 5 6 7
| 167 239 258 292|169 176 187 194

Instr len

Table 12. Average instruction length associated with varying
ground-truth lengths.

of 6.39% in SR and 4.97% in SPL. This not only highlights
the necessity of employing a hybrid architecture but also
demonstrates the proficiency of CS3 in modeling the inter-
action between modalities and their mutual selection.

State space size. Table 10 compares different state space
sizes in our RSS and CS3. It can be observed that inade-
quate state space leads to insufficient retention of naviga-
tion history, while an excessively large state space results
in the inclusion of redundant or noisy information during
selection process.

11. Discussions

Correlation between Instruction Length and Complex-
ity of Navigation Tasks. As the length of instructions in-
creases, navigation tasks tend to become increasingly com-
plex. We quantify the complexity of navigation through the
length of ground-truth path. The ground-truth paths in both
R2R and REVERIE exhibit a length distribution ranging
from 4 to 7. Table 11 presents the average ground-truth
path lengths associated with instructions of varying lengths.
Table 12 presents the average instruction length associated
with varying lengths of ground-truth path.

Complementary to Existing Methods. Given our focus
on enhancing the fundamental model structure, we em-
ploy DUET [9] as the baseline model, which is widely
recognized as a strong benchmark in recent literature.
Our proposed RSS and CS3 can be integrated with other
SoTA methods such as advancing local perception in
BEVBert [1]. Results of the integration of COSMO and
BEVBert are reported in Tab. 1.

Advantages of CS3 over Mamba. As illustrated in Table
4, the performance enhancement of CS3 over Bi-Mamba
is substantial (4+3.86% in SR and +4.53% in SPL). This
is attributed to the effective modal alignment facilitated by
the dual-stream architecture of CS3. Although Mamba has
been effectively utilized in the multimodal domain, such



‘Walk to the hallway on this level which has a closed arch at on end housing a
wooden cabinet. As you walk towards the cabinet, there are three pictures on
the left. I want you to dust the top of the middle photo.
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Figure 6. Predicted paths of DUET and COSMO on REVERIE
validation unseen set. The red flag denotes the correct endpoint.

as VL-Mamba [61] and Cobra [81], these models perform
modal alignment prior to inputting visual and textual fea-
tures into Mamba language models. In contrast, VLN mod-
els, like HAMT [8] and DUET [9] along with their variants,
employ cross-modal attention mechanisms for both multi-
modal alignment and interaction. This distinction is a key
reason why SSMs cannot be directly applied to VLN tasks.
As illustrated in Equ(3) and Equ(4), the influence of the in-
put token z; at time ¢ on the state space is controlled by
matrix By, while the resolution of the input is determined
by A;. When tokens in the input sequence originate from
different modalities and are not aligned, it is evidently inap-
propriate to apply the same strategy (Sp and Sa) for con-
trolling their impact on the state space and the sampling fre-
quency. In this context, we propose CS3 as a dual-stream
selective SSM. As illustrated in Algorithm 1, for instance,
x represents visual features, and y represents textual fea-
tures. Now the objective is to utilize the textual features to
update the visual features. Thus, the input to the state space
is y, while the output of state space acts upon z. That is
to say, input matrix B and resolution matrix A should be
derived from y, whereas the output matrix C should be de-
rived from . This design facilitates effective alignment and
interaction between multi-modal features.

Limitations. The limitation of COSMO lies in its longer
navigation trajectory. On REVERIE val unseen split,
the Trajectory Length (TL) of DUET is 22.11, whereas
COSMO’s TL is 23.08. The examples in Fig. 5 show that
COSMO requires extensive exploration and backtracking to
identify the correct direction. In future work, we plan to in-
corporate common-sense knowledge to assist COSMO in
more rapidly determining the correct path and thereby re-
ducing its TL.

Please turn off the light in the hallway just outside
this bedroom.

Figure 7. Failure cases of COSMO on REVERIE validation un-
seen set.
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Figure 8. Visualization of attention maps.
12. More Qualitative Examples

We visualize the predicted paths of DUET and COSMO in
Figure 6. The instruction requires navigating to the end of
a hallway featuring a closed arch. Given that the starting
point is midway along a lengthy corridor, it is crucial to
accurately identify the closed arch. DUET failed to select
the correct direction, which ultimately led to its inability
to locate the target destination. In contrast, COSMO suc-
cessfully identified the direction containing the closed arch,
demonstrating its ability to accurately ground the objects as
described in the instruction within the environment. Conse-
quently, COSMO finds the three paintings mentioned.

In Figure 7, we visualize two failure cases. In the left
example, COSMO successfully located the dining room.
However, it was unable to navigate closer to the side table.
In the right example, COSMO was able to identify the light
in the hallway, but the presence of two corridors surround-
ing the room led to ambiguity in the instructions, resulting
in an error.

We analyze the attention weights from the last cross-
attention layer of the global cross-modal encoder for the
node ultimately selected by COSMO. As shown in Fig.8,
COSMO attends to the first sentence in steps 1-2, highlights
landmarks in step 3, and shifts focus to the second sentence
in steps 4-5. These observations demonstrate COSMO’s
ability to align language with visual input.



