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Supplementary Material

A. Network Structure
A.1. Detailed Structure of Feature Extraction (FE)
In the FE module, we utilize WTConv [6], H-Conv, V-Conv,
and D-Conv. Each component is described in detail below:

WTConv [6] employs a convolution kernel of size 5 and
is configured with 3 levels of wavelet downsampling to pro-
gressively reduce spatial resolution while preserving fre-
quency information.

The H-Conv, V-Conv, and D-Conv modules utilize
specifically designed convolution kernels to capture direc-
tional features in the input data. These kernels are as fol-
lows:
• Horizontal Convolution (H-Conv):

Horizontal Kernel:
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
This kernel is designed to emphasize horizontal edges in
the input data.

• Vertical Convolution (V-Conv):

Vertical Kernel:
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
This kernel is designed to capture vertical edge features.

• Diagonal Convolution (D-Conv):

Diagonal Kernel:
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
This kernel is designed to detect diagonal structures.

B. Experiments
B.1. Visualization Comparison on LOL-v2-

Synthesis Dataset.
Fig.10 presents a comparison on the LOL-v2-Synthesis
dataset between our CWNet and current state-of-the-art
methods, including FECNet [14], FourLLIE [38], Retinex-
former [3], UHDFour [19], UHDFormer [39], and Wave-
Mamba [61].

In the first row, other methods exhibit stripe noise in the
sky region. Specifically, FECNet shows severe hue distor-
tion, while other methods lack image sharpness. In the
second row, similar artifacts are observed, with stripe-like
noise appearing in the background areas.
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Figure 9. Visual comparison of results with and without the causal
inference. Focus on the highlighted regions to observe differences
in color and brightness, demonstrating the module’s effectiveness.

Methods DICM LIME MEF NPE VV AVG
Kind [57] 3.61 4.77 4.82 4.18 3.84 4.24
MIRNet [52] 4.04 6.45 5.50 5.24 4.74 5.19
SGM [51] 4.73 5.45 5.75 5.21 4.88 5.21
FECNet [14] 4.14 6.04 4.71 4.50 3.75 4.55
HDMNet [24] 4.77 6.40 5.99 5.11 4.46 5.35
Bread [10] 4.18 4.72 5.37 4.16 3.30 4.35
Retinexformer [3] 4.01 3.44 3.73 3.89 3.71 3.76
UHDFormer [39] 4.42 4.35 4.74 4.40 4.28 4.44
Wave-Mamba [61] 4.56 4.45 4.76 4.54 4.71 4.60
CWNet 3.92 3.58 3.66 3.61 3.74 3.70

Table 4. NIQE scores on DICM, LIME, MEF, NPE, and VV
datasets. Lower NIQE scores indicate better perceptual quality.
The best and second-best results in each column are shown in bold
and underlined respectively. ”AVG” denotes the average NIQE
scores across the five datasets.

In the third and fifth rows, other methods exhibit color
distortion when compared to the reference ground truth. In
contrast, our results appear more natural and exhibit better
visual quality. This demonstrates the effectiveness of our
causal inference component in mitigating color distortion
and preserving semantic structures by disentangling causal
relationships in the feature space.

In the fourth and last rows, upon magnification, our
results exhibit the most consistent and visually pleas-
ing brightening effect. The comparison on the LOL-v2-
Synthesis dataset further demonstrates that our CWNet
achieves natural brightness restoration and excels in pre-
serving semantic and color consistency.



B.2. Quantitative and Qualitative Comparison on
the DICM, LIME, MEF, NPE, and VV
Datasets

Quantitative Comparison. We evaluated CWNet on five
independent datasets: DICM [18] (69 images), LIME [11]
(10 images), MEF [27] (17 images), NPE [41] (85 im-
ages), and VV (24 images). The evaluation was con-
ducted using the no-reference image quality assessment
metric NIQE [28], with lower scores indicating better per-
ceptual quality and naturalness. Tab. 4 presents the NIQE
results. As shown, CWNet outperforms several state-of-the-
art (SOTA) methods, including SKF-SNR, UHDFormer,
and Wave-Mamba. To ensure a fair comparison, all meth-
ods were pretrained on the LSRW-Huawei dataset.

Qualitative Comparison. We provide qualitative com-
parisons on the DICM, LIME, MEF, NPE, and VV datasets
to visually demonstrate the effectiveness of CWNet.

1) Fig.11 shows the qualitative comparison on the DICM
dataset. In the first row, SKF-SNR produces distorted
and overexposed results, which negatively impact the vi-
sual quality. UHDFormer generates relatively natural re-
sults but suffers from overexposure, particularly in the high-
lighted regions, where the flower colors are overly bright-
ened. Wave-Mamba exhibits blurred edge details and in-
sufficient exposure control. In contrast, CWNet produces
clearer and more natural enhancement results. In the sec-
ond row, CWNet produces sharper and more natural results,
while SKF-SNR suffers from underexposure and noise ar-
tifacts. UHDFormer and Wave-Mamba produce relatively
blurry results. In the third row, SKF-SNR introduces un-
avoidable noise, and both UHDFormer and Wave-Mamba
generate unnatural sky colors. CWNet, however, produces
results with consistent and natural sky colors, demonstrat-
ing its robustness in handling color distortions.

2) Fig.12 presents the qualitative comparison on the
LIME dataset. SKF-SNR fails to achieve sufficient bright-
ness enhancement, while UHDFormer and Wave-Mamba
produce reasonable brightness but suffer from blurriness
and lack of detail. In contrast, CWNet generates sharper
textures and richer details, further validating the robustness
of our high- and low-frequency modeling in capturing fine-
grained details and global structures.

3) Fig.13 illustrates the qualitative comparison on the
MEF dataset. SKF-SNR produces unnatural flame colors
and insufficient brightness enhancement. UHDFormer and
Wave-Mamba exhibit varying degrees of blurriness, while
CWNet achieves the clearest and most visually pleasing en-
hancement results.

4) Fig.14 shows the qualitative comparison on the NPE
dataset. Similar to the MEF dataset, SKF-SNR fails to
provide sufficient brightness enhancement, and both UHD-
Former and Wave-Mamba suffer from blurriness. CWNet,
on the other hand, produces visually superior results with

Metrics UHDFour [19] UHDFormer [39] Wave-Mamba [61] CWNet

UICM ↑ 0.7464 0.9571 0.9082 0.9663
NIQE ↓ 5.385 5.564 5.689 4.494

Table 5. Visualization quality comparison on DarkFace. The best
results in each column are shown in bold.

richer detail information.
5) Fig.15 demonstrates the qualitative comparison on the

VV dataset. SKF-SNR generates distorted enhancement re-
sults with significant noise artifacts. UHDFormer suffers
from overexposure, as observed in the highlighted facial
regions, while Wave-Mamba produces blurry results. In
contrast, CWNet produces natural enhancements with well-
preserved details.

B.3. Quantitative and Qualitative Comparison on
the DarkFace Dataset

We conducted quantitative and qualitative comparisons
against current state-of-the-art (SOTA) methods on the
DarkFace dataset [50]. The DarkFace dataset, with 6,000
real-world low-light images, serves as a challenging bench-
mark for low-light image enhancement.

For quantitative evaluation, we employed two metrics:
NIQE and the Underwater Image Colorfulness Measure
(UICM)[34], which is commonly used to evaluate color-
fulness and naturalness in enhanced images. Unlike NIQE,
where lower scores indicate better perceptual quality, higher
UICM scores reflect greater colorfulness and naturalness.
As shown in Tab.5, our method achieves the best perfor-
mance across both metrics, highlighting its effectiveness in
low-light image enhancement.

Fig.17 illustrates the qualitative comparison on the Dark-
Face dataset. UHDFormer produces severe color distor-
tions, particularly in bright regions, indicating its limited
generalization ability on this dataset. In the first and last
rows, the zoomed-in regions show that our method outper-
forms UHDFormer and Wave-Mamba in detail preservation
and sharpness. Furthermore, in the second row, our method
demonstrates superior exposure control, yielding natural
and visually pleasing results. These observations validate
the effectiveness of CWNet in low-frequency brightness
control for natural exposure and high-frequency detail en-
hancement for sharper textures.

C. Ablation Study and Downstream Applica-
tion

C.1. Ablation Study: Validating the Effectiveness
of Core Modules

Fig.9 demonstrates the impact of causal inference on
CWNet’s performance. By focusing on the highlighted re-
gions, it is evident that removing causal inference leads to



Number PSNR↑ SSIM↑ LPIPS↓

L=1, C=1 21.06 0.6381 0.1772
L=2, C=2 21.50 0.6397 0.1562
L=3, C=3 21.34 0.6401 0.1587

Table 6. Ablation Study on Negative Sample Quantity in the
Causal Inference Module. The first column represents the num-
ber of Il and Ic. The best results in each column are shown in
bold.

inconsistencies in brightness and semantic coherence. In
contrast, incorporating causal inference ensures both bright-
ness restoration and semantic consistency, effectively pre-
serving color fidelity and structural details. This validates
the module’s ability to model causal relationships, enhanc-
ing overall enhancement quality.

C.2. Ablation Study on Negative Sample Quantity
in the Causal Inference

We conducted an ablation study within the Causal Infer-
ence module to determine the optimal number of negative
samples for brightness degradation Il (simulating underex-
posed regions) and color anomaly Ic (introducing color dis-
tortions), as summarized in Tab.6. The results indicate that
the optimal performance is achieved when the number of
samples for both brightness degradation and color anomaly
is set to 3.

C.3. Object Detection on DarkFace Dataset
To evaluate how enhanced images affect downstream tasks,
we conducted object detection experiments on the Dark-
Face dataset [50]. We evaluated our method on 200 ran-
domly selected images from the dataset using the official
YOLOv5 model pretrained on the COCO dataset [25], as
YOLOv5 is a widely used object detection framework and
COCO provides a diverse set of object categories. Fig.18
presents the visual comparison results, showing that our
method achieves superior detection accuracy compared to
others.

In the first experiment, our method achieves higher con-
fidence scores for detected pedestrians compared to other
methods and uniquely detects the motorcycle on the right,
likely due to its ability to enhance fine-grained details in
low-light conditions. In the second experiment, our method
detects more pedestrians with higher confidence and cor-
rectly identifies the traffic light, a task that is particularly
challenging due to the small size and low contrast of the
traffic light in the original image. In contrast, Wave-Mamba
misclassifies building lights as traffic lights.

These results demonstrate that our enhancement method
generates clearer images while preserving semantic struc-
tures effectively. By leveraging causal inference, CWNet
emphasizes intrinsic image content, enhancing downstream

task performance such as object detection.

C.4. Superior Edge Detection Performance
Fig. 16 compares edge detection performance across state-
of-the-art methods, highlighting CWNet’s ability to restore
details more precisely, particularly in highlighted regions.
This superior performance validates the effectiveness of
CWNet’s high-frequency module in preserving fine details
and structural fidelity, further demonstrating the robustness
of our architecture.
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Figure 10. Visual comparison on LOL-v2-Synthesis dataset.



Wave-Mamba CWNetUHDFormerSKF-SNRInput

Figure 11. Visual comparison on DICM dataset.
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Figure 12. Visual comparison on LIME dataset.
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Figure 13. Visual comparison on MEF dataset.
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Figure 14. Visual comparison on NPE dataset.
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Figure 15. Visual comparison on VV dataset.
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Figure 16. Edge detection comparison shows our method restores details more precisely, especially in highlighted regions, validating the
high-frequency module.
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Figure 17. Visual comparison on DarkFace dataset.



CWNet
 

Wave-MambaUHDFormer

Low-Light FourLLIE UHDFour

Low-Light FourLLIE UHDFour

CWNetWave-MambaUHDFormer
Figure 18. Detection comparison results on DarkFace dataset.


